Смекни!
smekni.com

Применение спектрального анализа

Методом, дающим ценные и наиболее разнообразные сведения о небесных светилах, является спектральный анализ. Он позволяет установить из анализа света качественный и количественный химический состав светила, его температуру, наличие и напряженность магнитного поля, скорость движения по лучу зрения и многое другое.

Спектральный анализ основан на разложении белого света на составные части. Если пучок света пустить на боковую грань трехгранной призмы, то, преломляясь в стекле по-разному, составляющие белый свет лучи дадут на экране радужную полоску, называемую спектром. В спектре все цвета расположены всегда в определенном порядке.

Как известно, свет распространяется в виде электромагнитных волн. Каждому цвету соответствует определенная длина электромагнитной волны. Длина волны в спектре уменьшается от красных лучей к фиолетовым примерно от 0,7 до 0,4 мкм. За фиолетовыми лучами спектра лежат ультрафиолетовые лучи, невидимые глазом, но действующие на фотопластинку. Еще более короткую длину волны имеют рентгеновские лучи. Рентгеновское излучение небесных светил, важное для понимания их природы, атмосфера Земли задерживает.

За красными лучами спектра находится область инфракрасных лучей. Они невидимы, но и они действуют на специальные фотопластинки. Под спектральными наблюдениями понимают обычно наблюдения в интервале от инфракрасных до ультрафиолетовых лучей.

Для изучения спектров применяют приборы, называемые спектроскопом и спектрографом. В спектроскоп спектр рассматривают, а спектрографом его фотографируют. Фотография спектра называется спектрограммой.

Существуют следующие виды спектров:

Сплошной или непрерывный, спектр в виде радужной полоски дают твердые и жидкие раскаленные тела (уголь, нить электролампы) и достаточно плотные массы газа.

Линейчатый спектр излучения дают разреженные газы и пары при сильном нагревании или под действием электромагнитного разряда. Каждый газ излучает строго определенный набор длин волн и дает характерный для данного химического элемента линейчатый спектр. Сильные изменения состояния газа или условий его свечения, например нагрев или ионизация, вызывают определенные изменения в спектре данного газа.

Составлены таблицы с перечнем линий каждого газа и с указанием яркости каждой линии. Например, в спектре натрия особенно ярки две желтые линии.

Установлено, что спектр атома или молекулы связан с их строением и отражает определенные изменения, происходящие в них в процессе свечения.

Линейчатый спектр поглощения дают газы и пары, когда за ними находится ярки и более горячий источник дающий непрерывный спектр. Спектр поглощения представляет собой непрерывный спектр, перерезанный темными линиями, которые находятся в тех самых местах, где должны быть расположены яркие линии, присущие данному газу.

Излучение спектров позволяет производить анализ химического состава газов, излучающих свет или поглощающих его, независимо от того, находятся ли они в лаборатории или на небесном светиле. Количество атомов или молекул, лежащих на нашем луче зрения, излучающих или поглощающих, определяется по интенсивности линий. Чем больше атомов, тем ярче линия или тем она темнее в спектре поглощения. Солнце и звезды окружены газовыми атмосферными линиями поглощения, возникающими при прохождении света через атмосферу звезд. Поэтому спектры Солнца и звезд – это спектры поглощения.

Нужно помнить, что спектральный анализ позволяет определять химический состав только самосветящихся или поглощающих излучение газов. Химический состав твердого тела при помощи спектрального анализа определить нельзя.