Смекни!
smekni.com

Самоаффинные фрактальные множества II. Размерности длины и поверхности (стр. 1 из 2)

1. Введение

Представляется соблазнительным попытаться измерить длину кривой с помощью измерительного циркуля, последовательно уменьшая его раствор, или измерить площадь поверхности с помощью все более и более мелкой триангуляции. Для обычных кривых такая процедура дает хороший результат. В то же время известно, что уже для обычных поверхностей (например, для цилиндра) возникают аномалии; основная аномалия проявляется в так называемом парадоксе площадей Шварца, который заслуживает широкой известности и будет обсуждаться ниже. Для самоподобных кривых эта процедура снова приводит к фрактальной размерности. Попытаемся использовать такую процедуру для самоаффинных фракталов и покажем, что размерности, к которым она приводит, отличаются от массовой и клеточной размерностей.

2. Измерение длины самоаффинных фрактальных кривых, являющихся графиками функций

2.1. Измерение длины с использованием «сосиски» Минковского дает локальную и глобальную размерности, совпадающие с DML и DMG

Следуя Минковскому и Булигану, определим приближенную длину кривой В(

), используя «сосиску» Минковского, содержащую все точки на расстоянии, меньшем чем

, от данной точки кривой. Для обычной спрямляемой кривой и при
<< 1 В(
)
= (2
)-1 (площадь сосиски). Для самоподобной кривой (см. [2], с. 36) B(
)~
1-D, для самоаффинной кривой площадь сосиски при малых
ведет себя как N(
)
-2
~
H, и поэтому локальная размерность равна 2—Н. Глобальная размерность равна 1. Оба этих значения встречались в части I данной статьи.

2.2. Нахождение длины с помощью измерительного циркуля при фиксации последнего выхода кривой дает локальную и глобальную размерности, совпадающие с DML и DMG

В одном из многих методов нахождения длины спрямляемой кривой используется измерительный циркуль, перемещающийся вдоль кривой. На кривой могут быть узлы, т. е. кратные точки произвольного порядка; достаточно, чтобы точки кривой были упорядочены, например «во времени». Начнем с исходной точки р0. Первая точка Р1 будет первым выходом кривой из круга с центром в ро и радиусом

и т. д. Если обозначить через L(
)
длину возникающей ломаной линии, приближенно описывающей нашу кривую, то длина кривой будет lim
0 L(
).

Можно выбрать в качестве P1 точку последнего, а не первого выхода вдоль кривой. И можно также двигаться назад.

Для самоподобной кривой находим L(

) ~

1-D, и снова по желанию можно отмечать либо первый, либо последний выход кривой.

Для наших самоаффинных кривых ситуация оказывается совершенно иная. Кроме локальной размерности при

0 имеется также глобальная размерность, которая, как мы увидим, равна 1. И локальная размерность, полученная при помощи измерительного циркуля, имеет два совершенно различных значения, одно для последних, а другое для первых выходов. Прежде чем двигаться дальше, заметим, что для самоподобных функций рассмотрение становится проще (а результаты не меняются), если круг с центром в точке Pk заменить квадратом.

Если воспользоваться этим обстоятельством, то рассмотрение последних выходов становится простым. Покроем нашу кривую (b''k)2-H квадратами со стороной (b")k<<1; это дает D>2—H. Далее добавим кольцо из 8 таких же квадратов вокруг каждой ячейки и тем самым увеличим сторону втрое. Ясно, что (b"k)2-H шагов циркуля с раствором 3(b")-k достаточно, чтобы пройти вдоль кривой, поэтому размерность, полученная с помощью измерительного циркуля, меньше 2—Н. Следовательно, она равна 2-H.

2.3. Нахождение длины с помощью измерительного циркуля при фиксации первых выходов дает «аномальные размерности». Локальное значение размерности при малых
равно 1/Н. Эта величина совпадает с фрактальной размерностью фрактального следа, связанного с функцией. Для больших п размерность равна 1

В этом разделе приведены результаты, полученные в работе [I].

При

>> tс (например, когда единица измерения ВH достаточно мала) график по сути дела близок к горизонтальной линии. При передвижении измерительного циркуля вдоль кривой

он в основном остается параллельным оси t, и L(

) слабо меняется с изменением

. Если считать, что L(
)~
1-D, тогда то обстоятельство, что L(
) является константой, дает для глобальной размерности значение 1 независимо от Н.

Если, наоборот,

<<tc (например, когда единица измерения ВH велика), то ситуация оказываетя иной: измеритель, передвигающийся вдоль кривой, в основном остается параллельным оси В. В результате получаем размерность, равную 1/Н.

Это чрезвычайно странное значение может превышать 2 и является аномальным вдвойне: оно противоречит значению 2-Н, которое получалось при других локальных определениях фрактальной размерности. С другой стороны, те, кто знакомы с фрактальным броуновским движением, могут отождествить 1/Н с фрактальной размерностью следа (в некотором E-мерном евклидовом пространстве RE при Е > 1/Н) движения, для которого координаты Е представляют собой независимые реализации Вн(t).

В этом случае попытка использовать необычный путь для измерения фрактальной размерности для одного множества в действительности заканчивается измерением значения, которое все пути дают для некоторого другого множества.

2.4. Размерности, связанные с покрытием аффинными прямоугольниками

В утом разделе мы хотим связать измерение длины с вопросами, обсуждавшимися в разд. 8, части I статьи. В обоих предельных случаях

>> 1 или
<< 1 число шагов измерителя L(
)/
для всех практических случаев равно числу прямоугольных ячеек высотой
=(b"}k и шириной (b')-k, используемых для покрытия фрактала. При обычном определении размерности фрактала выбираются квадратные ячейки, и число ячеек находится как функция их диаметра. Аналогичную формулировку можно применить и для величины Z.(
)/
, если в качестве диаметра прямоугольной ячейки выбрать ее большую сторону. В локальном случае наибольшей стороной является вертикальная, и мы приходим, как и в разд. 2.3, к размерности 1/Н. В глобальном случае наибольшей стороной является горизонтальная, так что размерность равна 1.

3. Измерение длины других самоаффинных кривых, в частности следов движения Пеано

К этому интересному случаю могут быть применены аргументы, аналогичные использованным в разд. 2.3.

Локальное значение. Использование измерительного циркуля раствором (b")-k << 1 потребует Nk шагов, и поэтому показатель для приближенного значения длины равен logb"(b"N-1)=1 -logb"N, так что размерность равна logb"N. В частности, в случае Пеано N = b'b" и размерность равна 1 + 1/H.

Глобальная размерность. Она равна logb'N и в случае Пеано принимает значение 1+ Н.

4. Парадокс площадей Шварца

Триангуляция обычных поверхностей оказывается делом гораздо более сложным, чем можно было бы ожидать. В частности, в конце XIX в. Герман Амандус Шварц показал, что для случая цилиндра единичного радиуса и единичной высоты безобидный на первый взгляд метод триангуляции может дать для площади боковой поверхности любую величину: от истинного значения 2

до бесконечности!