Смекни!
smekni.com

Различные подходы к определению проективной плоскости (стр. 8 из 9)


1) АС||BD. Рассмотрим параллелограмм ABDE и AFDCÞBD=AE и DF=AC. Произведем вычитание BD-DF=BF; AE-AC=CEÞBF=CEÞBCEF - параллелограмм ÞEF||BC.

2)


3) ACÇBD=0, так как AB||ED и CD||FA, то (|OA|/|OB|)=(|OE|/|OD|) и (|OC|/|OD|)=(|OA|/|OF|) получаем |OB|*|OE|=|OA|*|OD|=|OC|*|OF| Þ

(|OE|/|OF|)=(|OC|/|OB|) ÞEF||CB.

№4. Пусть A,B,D,E,N,M - шесть точек, обладающих тем свойством, что прямые AE,DM,NB пересекаются в одной точке и прямые АМ,DB,NE пересекаются в одной точке. Что можно сказать о прямых AB,DE,NM?


Решение. Пусть AEÇDMÇNB=C, AMÇDBÇNE=F обозначим () пересечения прямых АВ и DE через L. По теореме Паппа ()LÎMNÞABÇDEÇMN=L. Прямые AB,DE,NM пересекаются в одной точке.

№5. Доказать, что медианы треугольника пересекаются в одной точке.

AA’ÇBB’ÇCC’=S ?

Решение: Рассмотрим треугольник АВС и треугольник А1В1С1- дезарговые треугольники, то есть треугольники удовлетворяют теореме Дезарга.


ABÇ А1В1=P¥

BCÇ В1С1=Q¥

ACÇ А1С1=R¥


лежат на одной несобственной прямой S¥

по обратной теореме Дезарга прямые, проходящие через соответствующие вершины, пересекаются в одной точке S.

AA’ÇBB’ÇCC’=S.

№6. В евклидовой плоскости в четырехугольник вписана трапеция, параллельные стороны которой || его диагонали. Доказать, что непараллельные стороны трапеции пересекаются на другой диагонали.

Решение: треугольники NCK и AMP дезарговые треугольники по прямой теореме Дезарга, соответствующие стороны этих треугольников пересекаются в ()-ах, лежащих на одной прямой Þ ()F,D,B, то есть () пересечения непараллельных сторон трапеции принадлежат диагонали BD.

№7. В евклидовой плоскости противоположные вершины одного параллелограмма расположены соответственно на противоположных сторонах второго. Доказать, что оба параллелограмма имеют общий центр симметрии.

Требуется доказать, что LNÇMKÇBDÇAC=S

Решение.


ACÇLNÇBD - треугольники ALD и СNB - дезарговые треугольники удовлетворяют обратной теореме Дезарга ÞACÇLNÇBD=S.

Треугольники DKC и BMA - дезарговые треугольники по обратной теореме Дезарга ÞMKÇBDÇAC=S

Получили ACÇBDÇMKÇLN=S.

Оба параллелограмма имеют общий центр симметрии.

№8. В евклидовой плоскости дан треугольник и три параллелограмма, для каждого из которых одна сторона треугольника служит диагональю, а две другие - смежными сторонами. Доказать, что вторые диагонали этих параллелограммов пересекаются в одной точке.

Требуется доказать, что ANÇBPÇCM=S.

Решение: Треугольники ABC и NPM - дезарговые треугольники.

ABÇNP=Q¥

BCÇMP=R¥

ACÇNM=K¥

лежат на одной несобственной прямой P¥

по теореме обратной теореме Дезарга NAÇBPÇCM=S.

№9. В треугольнике АВС из его вершин проведены прямые, пересекающиеся в одной () S; A’=ASÇBC, B’=BSÇAC, C’=CSÇAB. Доказать, что точки BCÇB’C’, ACÇA’C’, ABÇA’B’ лежат на одной прямой.

Решение.

Обозначим () пересечения сторон BCÇB’C’, ACÇA’C’, ABÇA’B’ соответственно P,R,Q. Рассмотрим треугольники АВС и А’В’С’ прямые проходящие через вершины этих треугольников пересекаются в () SÞ () пересечения соответствующих сторон P,R,Q лежат на одной прямой.

№10. В конфигурации Дезарга одну из точек выбрать за дезаргову точку. Найти в этой конфигурации вершины дезарговых треугольников и дезаргову прямую.

Точка А- дезаргова точка

Треугольники A’RP и SCB - дезарговы треугольники

A’®S SCÇA’R=C’

R®C SBÇA’P=B’

P®B CBÇRP=Q.

Точки C’,B’,QÎS - дезаргова прямая.

№11. Сформулировать в терминах евклидовой геометрии теорему Дезарга для случая:

1) ()S¥ - несобственная (), дезаргова прямая S - собственная.


Формулировка теоремы Дезарга: Если прямые проходящие через соответствующие вершины двух треугольников параллельны, то точки пересечения соответствующих сторон лежат на одной прямой.

2) ()S собственная, прямая S¥ - несобственная.

Формулировка.

Если прямые, походящие через соответствующие вершины двух треугольников АВС и А’В’С’ пересекаются в одной точке и AB||A’B’, B’C||BC, то AC||A’C’.

3) ()S¥ - несобственная, прямая S¥ - несобственная.

Формулировка.

Если прямые проходящие через соответствующие вершины двух треугольников параллельны и AB||A’B’, BC||B’C’, то AC||A’C’.

№12. Прямая p лежит в плоскости треугольника АВС; К=ВСÇp, L=ACÇp, M=ABÇp, R=BLÇCM, S=CMÇAK, T=AKÇBL.

Доказать, что прямые AR,BS и CT пересекаются в одной точке.

Требуется доказать, что ARÇBSÇCT=Q


Решение