
Пример 1. Вычислить объем тела, ограниченного поверхностями x=0, у=0, х+у+z=1, z=0 (рис. 17).

Рис.17Рис.18
Решение.

D - заштрихованная на рис. 17 треугольная область в плоскости
Оху, ограниченная прямыми x=0, у=0, x+y=1. Расставляя пределы в двойном интеграле, вычислим объем:

Итак,

куб. единиц.
Замечание 1. Если тело, объем которого ищется, ограничено сверху поверхностью

а снизу—поверхностью

, причем проекцией обеих поверхностей на плоскость
Оху является область D, то объем V этого тела равен разности объемов двух “цилиндрических” тел; первое из этих цилиндрических тел имеет нижним основанием область D
, а верхним - поверхность

второе тело имеет нижним основанием также область D
, а верхним - поверхность

(рис.18).
Поэтому объём V равен разности двух двойных интегралов :

или

(1)
Легко, далее, доказать, что формула (1) верна не только в том случае, когда

и

неотрицательны, но и тогда, когда

и

- любые непрерывные функции, удовлетворяющие соотношению

Замечание 2. Если в области D функция

меняет знак, то разбиваем область на две части: 1) область D
1 где

2) область D
2 ,где

. Предположим, что области D
1 и D
2 таковы, что двойные интегралы по этим областям существуют. Тогда интеграл по области D
1будет положителен и будет равен объему тела, лежащего выше плоскости
Оху. Интеграл по D
2 будет отрицателен и по абсолютной величине равен объему тела, лежащего ниже плоскости
Оху, Следовательно, интеграл по D будет выражать разность соответствующих объемов.
б) Вычисление площади плоской области.
Если мы составим интегральную сумму для функции

по области D, то эта сумма будет равна площади S,

при любом способе разбиения. Переходя к пределу в правой части равенства, получим

Если область D правильная , то площадь выразится двукратным интегралом
5. Вычисление площади поверхности.
Пусть требуется вычислить площадь поверхности, ограниченной линией Г (рис.20); поверхность задана уравнением

где функция

непрерывна и имеет непрерывные частные производные. Обозначим проекцию линии Г на плоскость Oxy через L. Область на плоскости Oxy, ограниченную линией L, обозначим D.
Разобьём произвольным образом область D на n элементарных площадок

В каждой площадке

возьмём точку

Точке P
iбудет соответствовать на поверхности точка

Через точку M
iпроведём касательную плоскость к поверхности. Уравнение её примет вид

(1)
На этой плоскости выделим такую площадку

, которая проектируется на плоскость
Оху в виде площадки

. Рассмотрим сумму всех площадок

Предел

этой суммы, когда наибольший из диаметров площадок

- стремится к нулю, мы будем называть
площадью поверхности, т. е. по определению положим

(2)
Займемся теперь вычислением площади поверхности. Обозначим через

угол между касательной плоскостью и плоскостью
Оху. 
Рис.20 Рис.21
На основании известной формулы аналитической геометрии можно написать (рис.21)

или

(3)
Угол

есть в то же время угол между осью Oz и перпендикуляром к плоскости (1). Поэтому на основании уравнения (1) и формулы аналитической геометрии имеем

Следовательно,

Подставляя это выражение в формулу (2), получим

Так как предел интегральной суммы, стоящей в правой части последнего равенства, по определению представляет собой двойной интеграл

то окончательно получаем

(4)
Это и есть формула, по которой вычисляется площадь поверхности

Если уравнение поверхности дано в виде

или в виде

то соответствующие формулы для вычисления поверхности имеют вид

(3
’)

(3
’’)
где D’и D’’ - области на плоскостях Oyz и Oxz, в которые проектируется данная поверхность.
а) Примеры.
Пример 1. Вычислить поверхность

сферы

Решение. Вычислим поверхность верхней половины сферы

(рис.22). В этом случае

Следовательно, подынтегральная функция примет вид

Область интегрирования определяется условием

. Таким образом, на основании формулы (4) будем иметь

Для вычисления полученного двойного интеграла перейдём к полярным координатам. В полярных координатах граница области интегрирования определяется уравнением

Следовательно,