Этот пример показывает, как важно с самого начала продумать порядок интегрирования.
Формулы (А) и (Б) сведения двойного интеграла к повторному справедливы и для случая областей более общего вида. Так, формула (А) применима к области, указанной на рис.9, а формула (Б) - к области, изображенной на рис.10. В случае области ещё более общего вида (Рис.11) двойной интеграл следует разбить на сумму интегралов по более простым областям, а затем каждый из них сводить отдельно к повторному, пользуясь формулами (А) и (Б).
Рассмотрим теперь несколько примеров, связанных с вычислением двойных интегралов.
Примеры. 1) Найдём двойной интеграл от функции
по прямоугольной области D
Геометрически I выражает объём четырёхугольной призмы
(рис.12), основанием которой служит прямоугольник D, усечённый плоскостью
Возьмём повторный интеграл сначала по y, затем по x:
То же самое получим, интегрируя сначала по x, а затем по y:
2) Вычислим двойной интеграл
по области D, ограниченной линиями y=x и y=x2. Область D
изображена на рис.13. Интегрируя сначала по y, а потом по x,
получаем
Правильность результата можно проверить, изменив порядок интегрирования :
Вычислим объём тела, ограниченного цилиндрическими поверхностями
Поверхность, ограничивающая тело сверху, имеет уравнение z=4-y2. Область интегрирования D получается в результате пересечения параболы
Следовательно,
4) Вычислим объём V тела, ограниченного поверхностью
Заданное тело представляет собой сегмент эллиптического
параболоида, расположенный над плоскостью Оху (рис.15). Параболоид пересекается с плоскостью Оху по эллипсу
Следовательно, задача состоит в отыскании объема цилиндрического тела, имеющего своим основанием внутренность указанного эллипса и ограниченного параболоидом
В силу симметрии тела относительно плоскостей Oxz и Oyz можно вычислить объем четвертой его части, заключенной в первом координатном угле. Этот объем равен двойному интегралу, распространенному по области, заданной условиями
Подстановка
откуда
3.Приложения двойных интегралов к задачам
механики.
а) Масса плоской пластинки переменной плотности.
Рассмотрим тонкую пластинку, расположенную на плоскости Оху и занимающую область D. Толщину этой пластинки считаем настолько малой, что изменением плотности по толщине ее можно пренебречь.
Поверхностной плотностью такой пластинки в данной точке называется предел отношения массы площадки к ее площади при условии, что площадка стягивается к данной точке.
Определенная таким образом поверхностная плотность будет зависеть только от положения данной точки, т. е. являться функцией ее координат:
Если бы плотность была постоянной (
Для точного выражения массы следует найти предел суммы (*) при условии
б) Статические моменты и центр тяжести пластинки.
Перейдём теперь к вычислению статических моментов рассматриваемой пластинки относительно осей координат. Для этого сосредоточим в точках
Переходя к пределу при обычных условиях и заменяя интегральные суммы интегралами, получим
Находим координаты центра тяжести :
Если пластинка однородна, т.е.
в) Моменты инерции пластинки.
Моментом инерции материальной точки Р с массой m относительно какой-либо оси называется произведение массы на квадрат расстояния точки Р от этой оси.
Метод составления выражений для моментов инерции пластинки относительно осей координат совершенно такой же, какой мы применяли для вычисления статических моментов. Приведем поэтому только окончательные результаты, считая, что
Отметим еще, что интеграл
В механике часто рассматривают полярный момент инерции точки, равный произведению массы точки на квадрат ее расстояния до данной точки - полюса. Полярный момент инерции пластинки относительно начала координат будет равен
4. Вычисление площадей и объёмов с помощью двойных интегралов.
а) Объём.
Как мы знаем, объем V тела, ограниченного поверхностью