2.Вычисление двойных интегралов.
При вычислении двойного интеграла
При вычислении двойного интеграла (*) мы будем опираться на тот факт, что он выражает объём V цилиндрического тела с основанием D, ограниченного поверхностью
Рис.3
где S(х) - площадьпоперечногосечения тела плоскостью, перпендикулярной к оси абсцисс, а
Предположим сначала, что область интегрирования D удовлетворяет следующему условию: любаяпрямая, параллельная оси Ox или Oy, пересекаетграницу области не более чем в двухточках. Соответствующее цилиндрическое тело изображено нарис.3
Область D заключимвнутрь прямоугольника
стороны которого касаются границы области в точках А, В, С, Е. Интервал [а, b] является ортогональной проекцией области D на ось Ох, а интервал [c, d] - ортогональной проекцией области D на ось Oy. На рис.5 область D показана в плоскости Оху.
Точками A и C граница разбивается на две линии: ABC и AEC, каждая из которых пересекается с любой прямой, параллельной оси Oy, в одной точке. Поэтому, их уравнения можно записать в форме, разрешенной относительно y:
Аналогично точками В и Е граница разбивается на линии ВАЕи ВСЕ, уравнения которых можно записать так:
Рис.5
Рассечем рассматриваемое цилиндрическое телопроизвольнойплоскостью, параллельной плоскости Oyz, т.е.x=const,
Следовательно, интеграл
дает выражение для площади плоского сечения PMNR. Ясно, что величина этого интеграла зависит от выбранного значения х;другими словами, площадь рассматриваемого поперечного сечения является некоторой функцией от х, мы обозначим ее через S(х):
Согласно формуле (**) объем всего тела будет равен интегралу от S(x) в интервале изменения
Заменяя в этой формуле S(x) её выражением, окончательно получим
или в более удобной форме
Пределы внутреннего интеграла переменные; они указывают границы изменения переменной интегрирования у при постоянном значении второго аргумента х. Пределы внешнего интеграла постоянны; они указывают границы, в которых может изменяться аргумент х.
Меняя роли х и у, т. е. рассматривая сечения тела плоскостями y=const
Здесь интегрирование совершается сначала по х, а потом по у.
.Формулы (А) и (Б) показывают, что вычисление двойного интеграла сводится к последовательному вычислению двух обыкновенных определенных интегралов; нужно только помнить, что во внутреннем интеграле одна из переменных принимается при интегрировании за постоянную. Для краткости правые части формул (А) и (Б) называют повторными (или двукратными) интегралами, а сам процесс расстановки пределов интегрирования - приведением двойного интеграла к повторному.
Формулы приведения двойного интеграла к повторному приобретают особенно простой вид, когда область D является прямоугольником со сторонами, параллельными осям координат (рис.6). В этом случае становятся постоянными пределы не только внешнего, но и внутреннего интегралов:
В других случаях для сведения двойного интеграла к повторному необходимо прежде всего построить область интегрирования;лучше всего изобразить эту область прямо в плоскости Оху, как это сделано на рис. Затем нужно установить порядок интегрирования, т. е. наметить, по какой переменной будет производиться внутреннее интегрирование, а по какой - внешнее, и расставить пределы интегрирования.
Поясним на примерах, какпроизводится расстановка пределов интегрирования.
а) Примеры.
1) Приведем к повторному двойной интеграл
Рис. 6. Рис. 7.
ограниченныйпрямыми y=0,y=x и х=а (рис.7). Если интегрировать сначала по у, а потом по х, то внутреннее интегрирование производится от линии у=0 до линии у=х, а внешнее - от точки х=0 до точки х=а. Поэтому
Меняя порядок интегрирования, получим
2) Приведем к повторному интеграл
Область D, а также координаты крайних ее точек показаны на рис. 158. Вид области указывает на то, что удобнее интегрироватьсначала по x, а потом по y:
Если изменим порядок интегрирования, то результат уже не удастся записать в виде одного повторного интеграла, так как линия OBA имеет на разных участках разные уравнения.
Рис.8
Разбивая область D на две : OBC и CBA, получим