Ф-ция f(х) называется дифференцируемой в т.Хо, если ее
приращения f(х + х)-f(х ) можно представить в виде
Q(х ) х+о( х),где о( х) -б.м., не зависящая от х, Q( х)
-б.м. более высокого порядка, чем х.
Q(х )=lim (f(х + х)-f(х ))/ х
Этот предел называется производной ф-цией в точке и обозначается
f'(х ).
Производной ф-цией f(х) в т.Хо называется предел отноше-
ния приращения ф-ции к приращению аргумента х, когда
х_0.
(х )'= х
(a )'=a lna, ((e )'=e )
(log x)'=1/xlna, ((lnx)'=1/x)
sin'x=cosx
cos'x=-sinx
tg'x=1/cos x
ctg'x=-1/sin x
arcsin'x=1/ 1-x
arccos'x=-1/ 1-x
arctg'x=1/1+x
arcctg'x=-1/1+x
sh'x=chx (shx=e -e /2)
ch'x=shx (chx=e +e /2)
th'x=1/ch x (thx=shx/chx)
cth'x=-1/sh x (cthx=chx/shx)
f(x + x)-f(x )=f'(x ) x+o( x),
слагаемое f'(x ) x -линейно зависит от х, и если
f'(х)=0, то это слагаемое б.м. одного порядка с х.
Поэтому это слагаемое является главным в этой сумме и оно
называется дифференциалом ф-ции в т.Хо.
Дифференциалом дифференцируемой ф-ции в т.Хо называется
главная часть приращения, линейно зависящая от х.
df=f'(x ) x
Асимтотическое представление:
f(x + x)=f(x )+f'(x ) x+o( x)
f(x + x)=f(x )+df
§2 ОСНОВНЫЕ ПРАВИЛА ДИФФЕРЕНЦИРОВАНИЯ.
1. Если ф-ция f(x) тождественна const, то ее производная
тождественна 0.
(C)'=0
2. Если ф-ция u(x) и v(x) дифф. в т.Хо, то:
1) их линейная комбинация дифф. в этой точке и
( u+ v)'= u'+ v'
2) их произведение дифф. в т.Хо и (uv)'=u'v+uv'
(uvw)'=u'vw+uv'w+uvw'
3) если кроме того v(x )=0, то отношение
(u/v)'=u'v-uv'/v
3. Правило дифф. сложной ф-ции.
f(u) дифф. в т.Uo, u(x) дифф. в т.Хо, u(x )=u =>
f(u(x)) -дифф. в т.Хо и (f(u(x)))'=f'(u ) u'(x )