Распределение Больцмана.
Под идеальным газом будем понимать газ, между частицами которого взаимодействие настолько мало, что им можно пренебречь. Это предположение может быть обеспечено малостью взаимодействия частиц при любых расстояниях между ними, либо при достаточной разрежённости газа. Отсутствие взаимодействия между молекулами позволяет свести задачу об определении уровней энергии Enвсего газа в целом к определению уровней энергии отдельной молекулы (будем их обозначать ek, где индекс k представляет собой совокупность квантовых чисел, определяющих состояние молекулы, энергии En выразятся, как суммы энергий по молекулам).
То есть мы рассматриваем достаточно разрежённый газ. (фактически это выполняется для всех обычных молекулярных или атомных газов).
Итак, применив к молекулам формулу Гиббса, мы утверждаем, что:
(N – полное число частиц в газе). Это и есть распределение Больцмана (L.Boltzmann, 1877).
Константа a может также быть выражена через термодинамические величины газа.
Применим распределение Гиббса к совокупности всех частиц, находящихся в данном квантовом состоянии. Мы можем это сделать (даже если nk не малы), поскольку непосредственного силового взаимодействия между этими и остальными частицами нет, а квантомеханические эффекты имеют место лишь для частиц, находящихся в одном и том же состоянии. Положим в общей форме распределения Гиббса с переменным числом частиц E = nkek, N = nk и, приписывая индекс k величине W, получим распределение вероятностей различных значений nk в виде:
Что же касается вероятностей значений nk > 1, то они в этом приближении должны быть положены равными нулю. Поэтому
И мы получаем распределение Больцмана в виде:
Таким образом, коэффициент a в законе распределения Больцмана оказывается выраженным через химический потенциал газа.
Свободная энергия больцмановского идеального газа
Применим общую формулу:
для вычисления свободной энергии газа, описываемого статистикой Больцмана:
Написав энергию En в виде суммы энергий мы можем свести суммирование по
всем состояниям газа к суммированию по всем состояниям отдельной молекулы. Каждое состояние газа будет определяться набором N (число молекул в газе) значений ek, которые в больцмановском случае можно считать различными между собой (в каждом молекулярном состоянии – не более одной молекулы). Напишем exp(-En/T) в виде произведения множителей exp(-ek/T) для каждой из молекул и суммируя независимо по всем состояниям каждой молекулы, мы получим
Набор возможных значений ek для всех молекул газа одинаков, а потому одинаковы и суммы
S exp(-ek/T).
Учтём, однако, что все наборы N различных значений ek, отличающиеся лишь распределением одинаковых молекул газа по уровням ek соответствуют одному и тому же квантовому состоянию газа. В статсумме же каждое из состояний должно учитываться один раз. Поэтому мы должны ещё разделить выражение (*) на число возможных перестановок N молекул друг с другом, т.е. на N!.
Таким образом:
Подставляя в общую формулу, получаем:
Поскольку N – очень большое число, то для ln(N!) можно воспользоваться приближением ln(N!) » N×ln(N/e). В результате
получим следующее:
Эта формула позволяет нам вычислить свободную энергию любого газа, состоящего из одинаковых частиц и подчиняющегося статистике Больцмана.
В классической статистике это может быть переписано как:
Двух- и трёхатомный газ. Вращение молекул.
Двухатомные молекулы из одинаковых атомов обладают специфическими особенностями, которые мы рассмотрим на примере пара- и ортоводорода.
Как уже было рассмотрено, общая статсумма выражается как
“Вращательная” и “колебательная” суммы здесь определяются как
Множитель (2К+1) во вращательной сумме учитывает вырождение вращательных уровней по направлениям момента К. Свободная энергия, в конечном итоге выражается из трёх частей:
Первый член связан со степенями свободы поступательного движения молекул, назовём его поступательной частью
Вращательная и колебательные части:
Поступательная часть всегда выражается формулой типа
Полная теплоёмкость будет выражаться в виде суммы
Здесь e(M) – выражение кинетической энергии вращения как функции момента вращения М.
Отсюда свободная энергия