Так как общее решение исходного дифференциального уравнения записывается в виде U(x,y)=c=const, то, заменяя две постоянных на одну, получаем следующий вид общего решения уравнения
Пример 1. Дано дифференциальное уравнение
(6x2y2+6xy-1)dx+(4x3y+3x2y+2y)dy=0.
В нем M(x,y)=6x2y2+6xy-1, N(x,y)=4x3y+3x2y+2y. Из
Следует, что данное уравнение является уравнением в полных дифференциалах. Проведем его решение в два этапа.
На первом решаем уравнение
в котором переменная y считается закрепленной. Интегрируя это уравнение, получаем
U(x,y)=2x3y2+3x2y-x+h(y).
На втором этапе определяем вид функции h(y), используя для этого соотношение
и дифференциальное уравнение для h и y
4x3y+3x2+h/(y)=4x3y+3x2+2y или
Интегрируя последнее, получаем h=y2+c. Общий интеграл исходного уравнения тогда можно записать в виде
2x3y2+3x2y-x+y2=c.
Пример 2. Найти решение уравнения
2xsinydx+(3y2+x2cosy)dy=0.
Проверяем, является ли оно уравнением в полных дифференциалах? Для этого из M(x,y)=2xsiny, N(x,y)=3y2+x2cosy
Находим
Так как, очевидно, выполняется условие
то уравнение есть уравнение в полных дифференциалах.
Сначала решаем уравнение
считая y постоянной. Интегрирование уравнения дает
U(x,y)=x2siny+h(y).
Затем находим функцию h(y), используя соотношения
Интегрируя последнее уравнение, получаем h=y3+c.
Тогда общий интеграл исходного дифференциального уравнения записывается в виде
X2siny+y3+c=0.
Далее рассмотрим понятие интегрирующего множителя. Ранее отмечалось, что уравнение в полных дифференциалах возникает, когда поведение системы сохраняет некоторую величину U, т.е. удовлетворяет соотношению
U(x,y)=c.
Дифференциальным аналогом его является уравнение dU(x,y)=0 или
M(x,y)dx+N(x,y)dy=0,
Где
Предположим теперь, что частные производные функции U(x,y) представимы в виде
Тогда соотношению U(x,y)=e будет соответствовать уравнение в полных дифференциалах вида
M(x,y)g(x,y)dx+N(x,y)g(x,y)dy=0.
Если теперь данное уравнение разделить на общий множитель слагаемых g(x,y), то получим уравнение M(x,y)dx+N(x,y)dy=0.
Решение последнего уравнения эквивалентно решению предыдущего, из которого оно получено, однако оно может уже не являться уравнением в полных дифференциалах, также для него возможно будет
В то же время после умножения его на множитель g(x,y), оно становится уравнением в полных дифференциалах.
Определение. Функция g(x,y) называется интегрирующим множителем дифференциального уравнения
M(x,y)dx+N(x,y)dy=0,
Если после умножения его на эту функцию оно становится уравнением в полных дифференциалах.
Данный способ решения дифференциального уравнения называется методом интегрирующего множителя.
Найдем условие, которому должен подчиняться интегрирующий множитель g(x,y). Из предложения, что уравнение
M(x,y)g(x,y)dx+N(x,y)g(x,y)dy=0
Становится уравнением в полных дифференциалах следует выполнение условия
Разверернув левую и правую части этого тождества
заключаем, что функция g(x,y) должна являться решением уравнения
В общем случае решение данного уравнения вызывает затруднения. Отметим два случая, когда его решение становится проще.
Случай первый. Пусть
Тогда интегрирующий множитель можно искать в виде функции зависящей только от x.
Действительно, пусть g=g(x). Тогда в виду
интегрируя которое, находим
Второй слуяай относится к аналогичной ситуации, когда
Тогда интегрирующий множитель ищется в виде функции только от y, т.е. g=g(y).
Аналогично предыдущему, не трудно видеть, что функция g(y) является решением уравнения
и представляется в виде
Пример 3. Дано уравнение
(y2-3xy-2x2)dx+(xy-x2)dy=0.
Из M(x,y)=y2-3xy-2x2, N(x,y)=xy-x2,
Однако из соотношения
вытекает, что можно найти такой интегрирующий множитель g=g(x), после умножения на который исходное уравнение становится уравнением в полных дифференциалах.
Указанный множитель находим из уравнения
интегрируя которое получаем
Умножая исходное уравнение на множитель g=x, получаем
(xy2-3x2y-2x3)dx+(x2y-x3)dy=0,
являющееся уже уравнением в полных дифференциалах. Интегрируя его, находим
затем из U/y=x2y-x3+h/(x) и U/y=N(x,y)=x2y-x3
получаем x2y-x3+h/=x2y-x3, т.е.
следовательно,h=c=const. Таким образом, общее решение имеет вид
Пример 4. Требуется решить уравнение
(2xy2-y)dx+(y2+x+y)dy=0.
Из M(x,y)=2xy2-y, N(x,y)=y2+x+y,
Однако из соотношения
вытекает, что для исходного дифференциального уравнения существует интегрирующий множитель g=g(y), с помощью которого уравнение становится уравнением в полных дифференциалах.
Интегрирующий множитель находится из уравнения
Интегрируя его, получаем
Умножая исходное уравнение на множитель
Это уравнение является уже уравнением в полных дифференциалах. Решаем его
затем из