Смекни!
smekni.com

Аналитическая геометрия (стр. 3 из 3)

АСИМПТОТИЧЕСКИЕ НАПРАВЛЕНИЯ КРИВЫХ 2-ГО ПОРЯДКА.

Пусть крива второго порядка задана уравнением (1). Рассмотрим квадратную часть этого уравнения: u(x,y)= a11x2+2a12xy+a22y2

Определение: ненулевой вектор (a, b) координаты которого обращают в ноль квадратичную часть называется вектором асимптотического направления заданной кривой.

(a, b) – вектор асимптотического направления.

a11a2+2a12ab+a22b2=0 (*)

Рассмотрим (a’, b’) параллельный (a, b):

следовательно
. Дробь a/b характеризует вектор асимптотического направления.

Задача: выяснить какие асимптотические направления имеют кривые 2-го порядка.

Решение: положим, что b¹0 и поделим на b2, получим: a11(a/b)2+2a12a/b+a22=0 из этого квадратного уравнения найдем a/b.

т.к. у линий гиперболического и параболического типов I2£0, то они имеют асимптотические направления. Т.к. у эллипса I2>0 следовательно таких у него нет (говорят он имеет мнимые асимптотические направления).

Найдем асимптотические направления у гиперболы:

(a, b)1=(a,b)

(a, b)2=(-a,b)

Векторы асимптотического направления являются направляющими векторами для асимптот.

Итак: гипербола имеет два асимптотических направления, которые определяются асимптотами гиперболы.

Найдем асимптотические направления у параболы:

y2=2px

y2-2px=0

u(x,y)= y2+0, y=0

(a, b)=(0,0)

Итак: вектор асимптотического направления параболы лежит на оси симметрии параболы, т.е. прямая асимптотического направления пересекает параболу в одной точке, след. асимптотой не является. Парабола имеет одно асимптотическое направление, но асимптот не имеет.

РАЗЛИЧНЫЕ УРАВНЕНИЯ ПЛОСКОСТИ.

Пусть задано трехмерное пространство.

Теорема: Плоскость в афинной системе координат задается уравнением первой степени от трех переменных: Ax+By+Cz+D=0, где A,B,C¹0 одновреенно. Справедлива и обратная теорема.

Теорема: Вектор n(A, B, C) ортоганален плоскости, задаваемой общим уравнением.

Вектор n – нормальный вектор плоскости.

2. Уравнение плоскости в отрезках:

3. Уравнение плоскости, определенной нормальным вектором и точкой.

Пусть n(A,B,C) и М(x0;y0;z0). Запишем ур-е пл-ти:

Ax+By+Cz+D=0

Ax0+By0+Cz0=-D

A(x-x0)+B(y-y0)+C(z-z0)=0

5. Уравнение плоскости ч/з 3 точки.

Пусть известны три точки не принадл. одной прямой.

М1(x1;y1;z1); М2(x2;y2;z2); М3(x3;y3;z3)

Пусть М(x;y;z) – произвольная точка плоскости. Т.к. точки принадл. одной плоскости то векторы компланарны.

М1Мx-x1 y-y1 z-z1

М1М2x2-x1 y2-y1 z2-z1 =0

М1М3x3-x1 y3-y1 z3-z1

6. Параметрическое ур-е плоскости.

Пусть плоскость определена точкой и парой некомпланарных векторов. V(V1;V2;V3); U(U1;U2;U3); M0(x0;y0;z0), тогда плостость имеет вид: система: x=x0+V1t+U1s и y=y0+V2t+U2s и z=z0+V3t+U3s

РАССТОЯНИЕ ОТ ТОЧКИ ДО ПЛОСКОСТИ.

Ax+By+Cz+D=0; M0(x0;y0;z0)

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПЛОСКОСТЕЙ В ПРОСТРАНСТВЕ.

Угол между плоскостями: пусть заданы две плоскости: A1x+B1y+C1z+D1=0; A2x+B2y+C2z+D2=0, поэтому n1(A1;B1;C1); n2(A2;B2;C2). Отыскание угла между плоскостями сводится к отысканию его между нормальными векторами.