(2)
Для доказательства равенства (2) найдем производные от левой и правой его частей:
Производные от правой и левой частей равны, следовательно, как и в равенстве (1), разность двух любых функций, стоящих слева и справа, есть постоянная. В этом смысле и следует понимать равенство (2).
При вычислении неопределенных интегралов бывает полезно иметь в виду следующие правила.
1).Если
то
Действительно, дифференцируя левую и правую части равенства (3) получим
2). Если
то
3. Если
то
Равенства (4) и (5) доказываются дифференцированием правой и левой частей равенств.
Пример 1.
=
Пример 2.
=
Пример 3.
Пример 4.
Пример 5.
4)Интегрирование методом замены переменой или способом подстановки
Пусть требуется найти интеграл
Сделаем замену переменной в подынтегральном выражении, положив
x=φ(t), (1)
где φ(t)-непрерывная функция с непрерывной производной, имеющая обратную функцию. Тогда dx= φ′(t)dt;докажем, что в этом случае имеет место следующее равенство:
Здесь подразумевается, что после интегрирования в правой части равенства вместо t будет подставлено его выражение через х на основании равенства (1).
Для того чтобы установить, что выражения, стоящие справа и слева, одинаковы в указанном выше смысле, нужно доказать, что их производные по х равны между собой . Находим производную от левой части :
Таким образом, имеем
Следовательно, производные от х от право й и левой частей равенства (2) равны, что и требовалось доказать.
Функцию
Замечание. При интегрировании иногда целесообразнее подбирать замену переменной не в виде
Здесь удобно положить
тогда
Приведем несколько примеров на интегрирование с помощью замены переменных.
Пример 1.
Пример 2.
Пример 3.
Пример 4.
(предполагается, что a>0).
В примерах 3 и 4 выделены формулы ,приведенные в таблице интегралов под номерами 11′и 13′(см. выше,пункт №2).
Пример 5.
Пример 6.
Метод замены переменных является одним из основных методов вычисления неопределенных интегралов. Даже в тех случаях, когда мы интегрируем каким -либо другим методом, нам часто приходится в промежуточных вычислениях прибегать к замене переменных. Успех интегрирования зависит в значительной степени от того, сумеем ли мы подобрать такую удачную замену переменных, которая упростила бы данный интеграл. По существу говоря изучение методов интегрирования сводится к выяснению того, какую надо сделать замену переменной при том или ином виде подынтегрального выражения. Этому посвящены большая часть настоящего пункта.
5)Интегрирование по частям
Пусть u и v две дифференцируемые функции от х. Тогда, как известно, дифференциал произведения uv вычисляется по следующей формуле :d(uv)=udv+vdu.Отсюда, интегрируя, получаем
Последняя формула называется формула интегрирования по частям. Эта формула чаще всего применяется к интегрированию выражений которые можно так представить в виде произведения двух сомножителей u и dv, чтобы отыскать функцию v по её дифференциалу dv и вычисления интеграла
Пример 1.
Замечание. При определении функции v по дифференциалу dv мы можем брать любую произвольную постоянную, так как в конечный результат она не входит (что легко проверить, подставив в равенство(1) вместо v выражение v+C). Поэтому удобно считать эту постоянную равной нулю.
Правило интегрирования по частям применяется во многих случаях. Так, например, интегралы вида
некоторые интегралы, содержащие обратные тригонометрические функции, вычисляются с помощью интегрирования по частям.
Пример 2. Требуется вычислить
Пример 3. Требуется вычислить