И.А. Колесникова
Российский университет дружбы народов
О вариационности некоторых ДУЧП с отклоняющимися аргументами
Исследована задача существования вариационных принципов для дифференциальных уравнений с отклоняющимися аргументами вида
|
|
существует производная Гато
Решается задача существования вариационных принципов для заданных ДУЧП с отклоняющимися аргументами вида
где
в предположении достаточной гладкости всех рассматриваемых функций.
Зададим область определения оператора N равенством
Здесь
Обозначим
Введем классическую билинейную форму вида
|
Функционал FN называется потенциалом оператора N, а N – градиентом функционала FN. Записывают N=gradфFN. Оператор N называется потенциальным на множестве D(N) относительно Ф.
Обозначая через
Как известно [2., стр.15], необходимым и достаточным условием потенциальности оператора N на множестве D(N) относительно заданной формы является условие симметричности
|
где F0 произвольный фиксированный элемент из R.
Для уравнения вида (2) устанавливается, что существует вариационный принцип в указанном выше смысле тогда и только тогда, когда справедлива
Теорема 1. Для потенциальности оператора (2) на множестве (3) относительно билинейной формы (4) необходимо и достаточно, чтобы выполнялись условия
Доказательство теоремы может быть проведено по схеме изложенной в работе [1, стр.43].
2.Примеры.
|
Для решения вопроса о вариационности задачи (7),(8) воспользуемся теоремой 1. Из условий (6) получим
Отсюда заключаем, что в случае потенциальности рассматриваемого оператора коэффициенты a-1, a 0 ,a 1 могут зависеть только от x, а b-1, b0, b1 – только от t.
С учетом условий (9), уравнение (7) может быть записано в виде
Соответствующий функционал имеет вид
| |
где a,b – const, u – неизвестная функция с граничными условиями
Для оператора задачи(10),(11) условия (6) не выполняются. В этой связи рассматривается следующая задача.
Найти функцию [2] М=М(x,t,u,ui) в Ω для любого u из D(N) и соответствующий функционал F[u] так, что
|
Соответствующее эквивалентное уравнение будет иметь вид:
Таким образом, задача (13’), (11) допускает вариационную формулировку с функционалом
Список литературы
[1] Савчин В.М. Условия потенциальности Гельмгольца для ДУЧП с отклоняющимися аргументами.// XXXII Научная конференция факультета физико-математических и естественных наук. Тезисы докладов.1996г.С. 25.
[2] Филиппов В.М., Савчин В.М., Шорохов С.Г., Вариационные принципы для непотенциальных операторов. Итоги науки и техники. Современные проблемы математики. Новейшие достижения. Том 40.М.1992.