3. Функция называется дифференцируемой в точке х, если ее производная в этой точке конечна. Функция f(x) дифференцируема в промежутке а<х<b, если ее производная f '(х) конечна в каждой точке промежутка.
4. Кривая, имеющая касательную, иногда расположена по обе стороны касательной (черт.). В этом случае говорят, что касательная пересекает кривую.
Зависимость между дифференцируемостью и непрерывностью функции
1°. Теорема. Если функция y=f(x) имеет в точке х определенную производную, то она непрерывна в этой точке.
Доказательство. Напишем тождество:
Δy=(Δy/Δx)*Δx
так как всегда считаем Δx ≠ 0. При стремлении Δx к нулю отношение Δy/Δx имеет определенный предел (по условию) и, следовательно, есть величина ограниченная, Δx; есть бесконечно малая. Поэтому произведение (Δy/Δx)*Δx есть бесконечно малая величина, предел ее равен нулю, т. е.
Функция | Ее производная |
Xp | px p-1, pÎR |
c (c-const) | 0 |
1/x | -1/x2 |
____ √x | ____ 1/2√x |
Ex | ex |
sin x | cos x |
cos x | -sin x |
tg x | 1/cos2x |
ctg x | -1/sin2x |
y = up | pu’up-1 |
ln x | 1/x |
ax | ax lna, a>0 |
log a x | 1/(x lna), a>0, a¹0 |
arcsinx | ___________ 1/Ö1-x2 |
arccosx | ____________ -1/Ö1-x2 |
arctg x | 1/(1+x2) |
arcctg x | -1/(1+x2) |
Правила дифференцирования
Пусть c – постоянная, f(x) и g(x) – дифференцируемые функции, тогда
c = 0;
(c * f(x))’ = c * (f(x))’;
(f(x) + g(x))’ = f ‘(x) + g ‘(x);
(f(x) * g(x))’ = f ‘(x) * g(x) + f(x) * g ‘(x);
(f(x)/g(x))’ = (f ‘(x) * g(x) – f(x) * g ‘(x))/g2(x);
Изучение функций с помощью производной
Признаки постоянства, возрастания и убывания функций
Будем считать, что рассматриваемая функция y=f(x) определена и дифференцируема в каждой точке отрезка a ≤ x ≤ b.
1°. Известно, что постоянная функция имеет в каждой точке отрезка производную, равную нулю. В полных курсах анализа доказывается обратное, что функция f(x) постоянна на отрезке [а, b], если в каждой точке отрезка ее производная f '(х) равна нулю.
2°. Если в промежутке a<x<b функция y=f(x) возрастающая (черт.), то при увеличении х каждое последующее ее значение более предыдущего и потому для каждого данного значения х приращения Δx и Δу положительны, отношение Δy/Δx положительно и при стремлении Δx к нулю принимает только положительные значения. Вследствие этого его предел — производная f '(х) — положительна или равна нулю
f '(x) ≥ 0
Если в промежутке а<х<b функция y=f(x) убывающая (черт.), то при увеличении х каждое последующее значение функции менее предыдущего. Поэтому для каждого данного значения x в то время, когда приращение Δx положительно, приращение Δy отрицательно, отношение Δy/Δx принимает только отрицательные значения и при стремлении Δx к нулю имеет своим пределом отрицательное число или нуль, т. е.
Так как значение производной f '(х) равно угловому коэффициенту касательной к графику функции y = f(x):
f '(x) = tgφ,
и у возрастающей функции f '(x) = tgφ ≥ 0, то касательная к графику возрастающей функции образует с осью Ох острый угол или параллельна оси Ох (черт. 106). У убывающей функции f '(х) = tgφ ≤ 0, касательная к графику образует с осью Ох тупой угол или параллельна оси Ох (черт.).
В промежутке a<x<b возрастания (или убывания) функции не существует никакого отрезка а ≤ х ≤ b1 (a<a1<b1<b), во всех точках которого производная равна нулю, так как если бы f '(x) = 0 на отрезке a1 ≤ х ≤ b1 то функция f(x) имела бы одно и то же значение во всех точках этого отрезка, т. е. не была бы возрастающей (или убывающей).
Точки графика возрастающей (или убывающей) функции, в которых касательная параллельна оси Ox, являются отдельными точками в том смысле, что абсциссы их не составляют отрезка. На черт. и черт. такими точками являются Р и Р1.
3°. В полных курсах анализа доказываются следующие достаточные признаки возрастания и убывания функции:
функция f(x) возрастает (или убывает) в промежутке a<x<b, если:
1) производная f '(х) не отрицательна (или не положительна) в промежутке а<х<b,
f '(x) ≥ 0 (или f '(x) ≤ 0)
и
2) в этом промежутке не существует отрезка a1 ≤ x ≤ b1 (а<а1<b1<b), во всех точках которого производная f '(х) = 0.
4°. Пример. Определить промежутки возрастания и убывания функции: у = х3 — х2 — 8х + 2.
Решение. Чтобы применить признаки возрастания и убывания функции, найдем производную данной функции и определим значения х, при которых она положительна или отрицательна:
у' = Зх2 — 2х — 8.
Разложим трехчлен второй степени на множители, так как гораздо легче судить о знаке произведения по знакам множителей, чем о знаке суммы по знакам слагаемых.
Корни трехчлена:
№ про-межутка | Характеристика промежутка | Знак x+4/3 | Знак x-2 | Знак f ’(x) | Данная функция |
1 | - ∞ < x< - 4/3 | — | — | + | возрастает |
2 | -4/3 < x < 2 | + | — | — | убывает |
3 | 2 < х < + ∞ | + | + | + | возрастает |
- ∞ <x < -4/3 и 2 <x < + ∞ и убывает в промежутке — 4/3 < х <2.
График данной функции представлен на черт.
5°.Функция у = х3 (черт.) имеет производную у = 3х2, которая положительна при всяком значении х, отличном от нуля. При х = 0 производная у' = 0. Функция у = х3 возрастает в промежутке — ∞<x<+∞; x= 0 есть отдельная единственная точка, в которой производная равна нулю, в ней функция возрастает. Действительно, при х = 0 х3 = 0, а при х < 0 х3 < 0 и при х > 0 х3 > 0.
Задачи на отыскание наибольших и наименьших значений величин
Решение. Пусть ширина участка x м, а площадь у м2, тогда:
y = (60-2x)x = 60x - 2х2
Значения x и y не могут быть отрицательными, поэтому множитель 60 - 2x > 0, а 0<x<30.
Площадь y есть функция x, определим промежутки ее возрастания и убывания:
y' = 60 - 4x.
y'>0, и функция возрастает, когда x<15; y<0, и функция убывает, когда x>15.
Если ширина х = | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
то площадь y = | 0 | 250 | 400 | 450 | 400 | 250 | 0 |
Кривая (черт.) поднимается от начала 0 до точки М(х= 15), а затем начинает падать. В точке х= 15 функция имеет наибольшее значение.