Рассмотрим СДР с минимально возможным количеством дипольных подрешеток (для плоской СДР L=3, для объемной - L=4).
Для случая L=3 (плоская СДР) положим

. Линии равного уровня f изображены на рис. 1. Используя (13), запишем систему уравнений

в виде

Из всех решений системы
существует одно нетривиальное решение:

,

,

, остальные получаются применением свойств

,

,

.
Проверим, что в данной точке

.

с собственными числами

. Так как собственные числа отрицательны, то матрица Гессе отрицательно определена. Таким образом, представленные решения являются точками строгих глобальных максимумов. В частности, также следует, что гексогональные кольцевые решетки оптимальны в смысле минимума целевой функции (10).
Для объемной СДР (n=3) численная оптимизация методом циклического покоординатного спуска [] для L=4 (с точностью до машинного нуля) приводит к конфигурации векторов hi, образующих правильный тетраэдр, то есть решение задается равенствами:

(в силу свойства

)

,

. Вторая конфигурация, к которой сходился алгоритм, получается из первой путем изменения направления какого-либо одного из порождающих векторов. Аналитические вычисления показывают, что градиент в данной точке равен нулю, а матрица Гессе равна:

Характеристический многочлен матрицы имеет вид

с корнями:

,

. Так как корни положительны, то положительно определена и матрица Гессе. Следовательно, найдено оптимальное (в смысле минимума (11)) решение. Эксперименты по численной оптимизации не приводят к другим решениям, кроме указанных. Это дает основание полагать, что найденные решения - точки глобальных минимумов g.
Список литературы
Полрадж А., Рой Р., Кайлатх Т. Оценивание параметров сигнала методом поворота подпространств // ТИИЭР. 1986. Т. 74. N.7. С.165-166.
Белов В.И. Теория фазовых измерительных систем / Под. ред. Г.Н.Глазова. Томск: ТГАСУР, 1994. С.144.
Васильев Ф.П. Численные методы решения экстремальных задач. М.: Гл. ред. физ.-мат. лит., 1988. С. 552.