М.В. Мамонова, Р.В. Потерин, В.В. Прудников, Омский государственный университет, кафедра теоретической физики
Явление возникновения связи между поверхностными слоями разнородных конденсированных тел, приведенных в соприкосновение, получило название адгезии. С физической точки зрения, адгезия определяется силами межмолекулярного взаимодействия, наличием ионной, ковалентной, металлической и других типов связи. Возникает необходимость определения характеристик адгезионного взаимодействия различных материалов как с точки зрения прикладной, так и фундаментальной науки о поверхностных явлениях.
В предлагаемой работе в рамках метода функционала плотности проведен расчет адгезионных характеристик для ряда металлов. Исследованы влияния различных приближений, учитывающих дискретность кристаллической структуры и неоднородность электронного газа в межфазной области раздела. Для расчета влияния электрон-ионного взаимодействия на адгезионные характеристики металлов нами был впервые использован обобщенный псевдопотенциал Хейне-Абаренкова. Проведен сравнительный анализ результатов, полученных с его использованием, с результатами, полученными с привлечением иных моделей, в частности, псевдопотенциала Ашкрофта.
Метод функционала плотности состоит в решении вариационной задачи о нахождении минимума энергии системы электронов, рассматриваемой на фоне заданного положительного заряда. В качестве пробных функций электронного распределения, как правило, выбирают решения формально линеаризованного уравнения Томаса-Ферми, а вариационным параметром считают обратную длину экранирования
Рассмотрим два полуограниченных металла, занимающих области z<-D и z>D. Пусть положительный заряд фона распределен в соответствии с формулой
где
где
Определим межфазную энергию взаимодействия контактирующих металлов, приходящуюся на единицу площади, как интеграл по z от объемной плотности энергии основного состояния электронного газа:
В рамках модели "желе" объемная плотность энергии неоднородного электронного газа может быть представлена в виде градиентного разложения:
где
есть плотность энергии однородного электронного газа в атомных единицах, включающая последовательно электростатическую, кинетическую, обменную и корреляционную энергии, а
где
Поправки к межфазной энергии, связанные с учетом дискретности распределения положительного заряда, вычисляются в рамках модели псевдопотенциала Хейне-Абаренкова:
усредненного по кристаллическим плоскостям, параллельным поверхности металлов, и будут характеризоваться параметрами
Для получения поправки к межфазной энергии, связанной с взаимодействием ионов металлов, мы воспользовались интерполяционной формулой, предложенной в [2]. Тогда
где
В соответствии с методом функционала плотности величина вариационного параметра
где
Решение уравнения (10) задает значения параметра
В соответствии с вышеизложенной методикой разработана программа численного интегрирования в (3) при одновременной минимизации в (10). Расчеты адгезионных характеристик были проведены для ряда простых и переходных металлов, полагая, что к межфазной границе раздела металлы направлены плотноупакованными гранями. Значения исходных параметров, использованные для расчета адгезионных характеристик металлов, приведены в следующей таблице:
Me | Z | | d, а.е. | c, а.е. | rc, а.е. | Rm, а.е. | |
Al | 3 | 0.027 | 4.29 | 5.25 | 0.96 | 1.15 | 0.28 |
Pb | 4 | 0.019 | 5.38 | 6.59 | 1.46 | 1.36 | -0.67 |
Cu | 2 | 0.025 | 3.92 | 4.80 | 0.92 | 1.41 | 1.21 |
Fe | 4 | 0.050 | 3.84 | 4.70 | 0.95 | 1.03 | 0.94 |
Cr | 4 | 0.049 | 3.85 | 4.72 | 0.96 | 1.06 | 1.02 |
На рис.1 приведены графики рассчитанных в рамках модели обобщенного псевдопотенциала Хейне-Абаренкова значений силы адгезионного взаимодействия как функции величины зазора 2D для таких пар металлов, как Al-Pb, Fe-Cr, Fe-Pb, Fe-Al, Al-Cu. На рисунках видно, что на малых расстояниях