к.т.н. В.А. Яковенко
На основе теории одиночных и связанных колебательных контуров разработана методика расчета согласующих цепей простых комплексных нагрузок. Получены соотношения для оценки потенциальных возможностей согласования нагрузок и определения параметров элементов одно- двух- и трехзвенных полиномиальных и оптимальных согласующих цепей при максимально плоской и чебышевской характеристиках рабочего затухания. Полученные расчетные соотношения особенно удобны при расчетах с помощью ЭВМ, так как не требуют ввода в ЭВМ больших массивов чисел, составляющих содержание расчетных таблиц.
Инженерные методики расчета широкополосных согласующих цепей (СЦ) хорошо разработаны особенно для простых типов нагрузок. Как правило, они базируются на табличных зависимостях /1,2/ и позволяют рассчитать отвечающую требованиям практики оптимальную чебышевскую СЦ. При этом, как правило, применяются цепи с количеством звеньев не более трех, так как с дальнейшим увеличением количества звеньев сложности реализации и настройки существенно растут, а потенциальные возможности согласования цепи увеличиваются незначительно. Ниже предлагаются полученные на основе теории одиночных и связанных контуров относительно простые аналитические соотношения, позволяющие произвести оценку потенциальных возможностей согласования комплексной нагрузки и произвести расчет элементов одно-, двух- и трехконтурных полиномиальных и оптимальных СЦ при максимально плоской и чебышевской аппроксимации рабочего затухания цепи.
1. Краткие сведения из теории колебательных систем
Теория колебательных систем в наиболее полном виде была разработана в 30-х годах прошлого века З.И. Моделем /3/ и базируется на нескольких основополагающих понятиях, среди которых одним из основных является понятие резонанса. Различают два типа резонанса - последовательный (резонанс напряжений) и параллельный (резонанс токов). Первый из них наблюдается в последовательной цепи, состоящей из индуктивности
Каноническая структура системы связанных контуров предполагает чередование рассмотренных выше двух типов контуров, связанных между собой внутри- или внешнеемкостной, внутри- или внешнеиндуктивной связью. В предположении отсутствия потерь в промежуточных контурах, что вполне оправдано при относительных полосах пропускания цепи гораздо больших обратной величины ненагруженной добротности контура, система связанных контуров характеризуется следующими параметрами. Добротность нагрузочного (последнего от генератора) контура определяется так же, как и для одиночного контура. Приведенная добротность промежуточного контура
При внутриемкостной и внешнеиндуктивной связях
Здесь штрихами помечены элементы соответствующих парциальных контуров системы,
Парциальным называется контур в составе системы связанных контуров эквивалентный исходному по резонансной частоте и характеристическому сопротивлению. Парциальный контур получается при закорачивании связанных с ним параллельных и размыкании связанных с ним последовательных контуров.
Основной характеристикой колебательной системы является частотная характеристика его коэффициента передачи
где
Для двухконтурной системы
Здесь
Для системы трех связанных контуров
Здесь
Форма частотной характеристики модуля коэффициента передачи цепи зависит от степени связи между контурами системы. Так в двухконтурной системе при связи меньше критической, когда