Руднев А. Д.
(В основе структуры пространства – электроны)
Как часто мы ошибочно полагаем, что в экспериментах вправе сами задавать координаты системы отсчета измеряемых параметров. Иногда это приводит к печальным последствиям, если полагаем, что лабораторный стол с измерительными приборами находится в начале координат. Подобно тому, как рыбы держатся выше или ниже в зависимости от атмосферного давления, мы должны так же “перемещать” лабораторную систему отсчета, ибо сами находимся в этой среде.
Нечто похожее на заре изучения электричества произошло с определением “знака заряда”, когда по реакции заряженных тел придумали “положительные” и “отрицательные” заряды. Одноименные заряды взаимно отталкивались, а разноименные давали электрический разряд. Последнее обстоятельство было истолковано, как взаимное уничтожение противоположных зарядов. И хотя впоследствии было доказано, что носителями электричества в обоих случаях являются электроны, почему-то не произошло переосмысление сущности зарядов. И закон Кулона, и вся сегодняшняя наука заимствуют эту ошибку.
А что в действительности иллюстрировали эксперименты? -Только то, что энергия электронов Е, присущая им в нормальном состоянии, увеличивалась трением тел, отчего потенциал поля заряда

возрастал. Поэтому некоторые тела обладали однопотенциальными электронами, другие - разнопотенциальными. Отсюда, и электрические разряды между телами без намека на присутствие положительного электричества.
Каждый электрон представляет собой конденсатор, в чем нетрудно убедиться, если одной обкладкой конденсатора считать поверхность сферы электрона, а другой – геометрический центр сферы

Ф; ( 1).
Подставив это значение в формулу

; ( 2),
находим значение так называемого элементарного заряда

Кулон. В таком случае объемная плотность таких конденсаторов в пространстве должна отражаться в удельной емкости среды.
В формуле Кулона кроме электрической постоянной

присутствует дополнительный параметр –относительная диэлектрическая проницаемость

, характеризующая (по замыслу) конкретную среду

; ( 3).
Если представить структуру свободных электронов в виде кубических ячеек со стороной

, то сила (3) окажется приложенной к двум противоположным граням куба. Поскольку на каждую ячейку приходится 1 свободный электрон, то каждая ячейка куба представляет собой элементарный конденсатор емкостью

. В практическом конденсаторе на площади S обкладки размещаются

электронов, каждый из которых обладает емкостью С1. Расстояние d между обкладками также вмещает большое количество

структурных модулей z. В итоге оказывается, что емкости элементарных конденсаторов суммируются по площади, но оказываются включенными последовательно в m звеньев

; ( 4),
где

- безразмерный множитель перед электрической постоянной, характеризующий
плотность размещения электрических зарядов (ПЭЗ) в данной среде

; ( 5).
Не являются исключением и твердые тела. Правда, свободного пространства между атомами в них намного меньше, отчего плотность размещения свободных электронов выше. В первом приближении можно считать, что величина

пропорциональна плотности

среды, хотя в действительности на неё существенное влияние оказывают поля атомов.
Внимательно рассмотрев формулу Кулона, обнаруживаем, что без относительной величины

она полностью идентична производной от потенциальной энергии поля электрона

; ( 6).
В этом легко убедиться, проверив равенство

(Дж м). Но формула (6) не подвержена мультипликативной коррекции. Являясь инструментом атомной физики, она объективно отражает энергию связи частиц. Значит, изменение величины z (расстояния между электронами) столь же объективно ведет к изменению энергию частиц в данном объеме пространства.
Поскольку дистанция

z управляет объемным параметром (5), необходимо энергию электронов тоже отнести к объему, приходящемуся на каждый электрон

(Дж/м3); ( 7).
Этот параметр представляет двойной интерес: во-первых, мы вышли на удельную энергию, лимитирующую магнитные возможности материалов и сред [1]. А во-вторых,-это параметр давления, т.к.

. Но в таком случае мы получаем еще одну приятную неожиданность, переписав уравнение (7)

; ( 8).
Это же начало термодинамики

! Теперь все логично: с уменьшением расстояния z между электронами емкость (4) конденсатора увеличивается. Следовательно, увеличится и относительная диэлектрическая проницаемость

. Так почему же в формуле Кулона она приводит к снижению силы взаимодействия? Может быть, формула Кулона дает неверный результат?
Нет, конечно, результат она дает почти правильный, потому, что данный параметр определен эмпирично, он не входит в иные зависимости и потому маскирует ошибку. А ошибка в том, что этот множитель никакого отношения к диэлектрической проницаемости не имеет.
Мы опять имеем дело с плавающим началом отсчета. Система ПЭЗ находится в напряженном состоянии за счет взаимного отталкивания. Эта напряженность выражается в виде некоторого начального смещения рабочей точки электрона до взаимодействия.
С повышением объемной плотности ПЭЗ (уменьшение расстояния z) угол наклона касательной возрастает без изменения расстояния r.
Параметр

как раз призван сделать это, поэтому параметр

оказался в знаменателе формулы Кулона. –Рядом с электрической постоянной. Поэтому их и объединили, отождествив по смыслу. Но такая корректировка не универсальна, поскольку только ослабляет погрешность. О существовании погрешности закона Кулона известно давно [2]. Из указанных сообщений следует, что серьезное отличие экспериментальных данных от расчетных наблюдается на дистанции

. Это позволяет нам определить ориентировочно предпочтительные условия, дающие наилучшее совпадение

. Поскольку опыты Кулона проводились в воздушной среде, а для нее величина

близка к единице, можно по рис.1 указать диапазон стабилизации наклона кривой

. В итоге, мы более уверенно принимаем величину

за параметр плотности ПЭЗ в воздухе. В объеме такой ячейки растворение энергии электрона создает очень малое смещение рабочей точки

. Эта энергия в равной мере действует на оба рассматриваемые электрона и потому не участвует во взаимодействии, как не обладающая градиентом. Соответственно, энергетическое взаимодействие электронов в воздушной среде выражается так

; ( 9).
Для выбранного примера сила взаимодействия уменьшилась в

раза. Это и есть так называемая относительная диэлектрическая проницаемость воздуха.
Калибровочной средой удобно выбрать дистиллированную воду, для которой известно значение

. Уравнение (9) позволяет оценить порядок объемной плотности ПЭЗ в воде:

.
Теперь можно скорректировать формулу Кулона в общем виде