где
Теперь обратимся к упорядоченному движению элементов газа. В этом случае на хаотическое движение элементов накладывается групповое движение и (20) запишется так
где V - групповая скорость элементов.
Теперь переходим к очень существенному и интересному моменту рассуждений. В данный момент мы ведем речь о собственном времени системы и о собственных масштабах системы и, вообще, о собственных характеристиках системы. Из этого следует, что собственная длина свободного пробега в газе не изменилась. Действительно, в групповой системе координат, связанной с групповой скоростью, каждый элемент проходит то же самое среднее расстояние, что и раньше. То есть справедливо следующее соотношение:
или
Заметим, что среднеквадратичная скорость полностью хаотического движения элементов
В действительности, выражение (24) имеет более общий характер, нежели (23), так может быть применено не только для газа, но и вообще для любых мультисистем, если обобщить понятие температуры и считать ее относительной (масштабной) величиной. В таком виде время зависит от энтропии и особенно интересно для рассмотрения в качестве собственного времени в живых, информационных или даже социальных системах.
Что касается функции
или, соответственно
Если учесть полученное в главе 3 выражение массы (6), в (26) можно заметить, что
Возвращаясь к началу главы, найдем выражение изменения собственного времени в системе, считая, что оно является результатом осреднения времени по событиям со всеми элементами системы, то есть характерным временем перераспределения энергии. Для газа мы считаем его временем свободного пробега частиц газа.
здесь λ - приведенная длина свободного пробега.
соответственно
Если ввести новую величину n, характеризующую концентрацию элементов газа, то, используя статистическое выражение времени свободного пробега, можно переписать (27) и (28) в виде
где
Далее, продолжим развитие понятия времени как итеративного процесса в виде (18). Перепишем теперь (18) в виде
где τ - собственное время системы.
Попробуем поменять знак времени на противоположный. Что при этом произойдет с системой. В смысле (18) и (19) воздействие оператора
Соотношение (31) будет справедливо только в том случае, если обе части в уравнении (31) являются чисто мнимыми. В то же время, оператор
Данное соотношение очень важно, так как отражает фундаментальное свойство времени - необратимость. Теперь, на основе предыдущих рассуждений, можем записать следующее соотношение
или
В частности, следует, что любую открытую динамическую или информационную систему можно рассматривать, как квантовый объект и, соответственно, применять для его описания математический аппарат квантовой механики, в дальнейшем, в главе, посвященной живым объектам, попробуем применить такой подход к изучению “живых” систем и вопроса самообучения. При этом нужно учитывать, что волновая функция ψ будет зависеть от времени в смысле (17), то есть должна быть нормирована для всякой системы и любую систему в этом случае необходимо описывать в терминах составляющих её элементов.
Здесь нужно сделать еще один важный вывод из приведенных рассуждений. В частности, из (18) и (11) следует, что течение времени системы возникает тогда, когда происходит изменение ее внутренней энергии. Следовательно, то обстоятельство, что любое изменение в системе приводит к изменению времени, выразится в следующем неравенстве
Продолжая те же рассуждения, нужно также учесть, что в такой записи возможно сколь угодно малое уменьшение влияния возмущения, что противоречит предположению о том, что любая физическая система состоит из элементов конечного масштаба. Так что, более точно выражение (34) должно быть записано как
где const - конечная величина, зависящая от масштаба восприятия и свойств системы. Как видим const имеет размерность действия, следовательно, можно сделать вывод, что любое изменение в системе происходит порциями конечной величины, определяемой соотношением (35). Собственно ничего экстраординарного в этом нет. Далее, попробуем подставить в (35) выражение для изменения собственного времени из (29), считая также
сокращая n, получим
Если проводить аналогию с квантово-механическим описанием можно записать
или далее
из чего окончательно получим
где ħ нужно понимать в более широком смысле, чем в квантовой механике, так как из приведенных выше рассуждений ħ зависит от температуры системы.
Что из этого следует? Ничего особенного из этого не следует. Выражение (36) отражает лишь то, что минимальное воздействие, которое можно оказать на систему, может быть проведено лишь с одним её элементом как целым. А любое воздействие приводит к увеличению времени системы, точнее к увеличению ее возраста.