БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Механико-математический факультет
Кафедра теоретической механики и робототехники
Тема: Синтез оптимальных уравнений
Студента 3-го курса 13 группы
Павловского Сергея Александровича
Научный руководитель
Лютов Алексей Иванович
Минск 2001г.
ОГЛАВЛЕНИЕ
Г л а в а I. Введение................................................................................................ 2
§ 1. Задача об оптимальном быстродействии.................................................... 2
1.Понятие об оптимальном быстродействии.................................................. 2
2.Задача управления........................................................................................ 3
3.Уравнения движения объекта....................................................................... 5
4.Допустимые управления............................................................................... 6
§ 2. Об основных направлениях в теории оптимальных процессов.................. 7
5.Метод динамического программирования.................................................. 7
6.Принцип максимума..................................................................................... 9
§ 3. Пример. Задача синтеза............................................................................... 12
7.Пример применения принципа максимума............................................... 12
8.Проблема синтеза оптимальных управлений............................................ 14
Г л а в а II. Линейные оптимальные быстродействия..................................... 15
§ 4 Линейная задача оптимального управления............................................... 15
9.Формулировка задачи................................................................................ 15
10.Принцип максимума................................................................................. 16
11.Принцип максимума — необходимое и достаточное условие
оптимальности............................................................................................... 17
12.Основные теоремы о линейных оптимальных быстродействиях........... 18
§ 5. Решение задачи синтеза для линейных задач второго порядка................ 18
13.Упрощение уравнений линейного управляемого объекта...................... 18
Г л а в а III. Синтез оптимальных управлений для уравнения второго
порядка.......................................................................................................... 20
§ 6. Решение задачи синтеза в случае комплексных собственных значений...... 20
14.Задача синтеза для малых колебаний маятника...................................... 20
Список используемой литературы....................................................................... 23
Г л а в а I
ВВЕДЕНИЕ
Управляемые объекты прочно вошли в нашу повседневную жизнь и стали обиходными, обыденными явлениями. Мы видим их буквально на каждом шагу: автомобиль, самолёт, всевозможные электроприборы, снабжённые регуляторами (например, электрохолодильник), и т. п. Общим во всех этих случаях является то, что мы можем «управлять» объектом, можем в той или иной степени влиять на его поведение.
Обычно переход управляемого объекта из одного состояния в другое может быть осуществлён многими различными способами. Поэтому возникает вопрос о выборе такого пути, который с некоторой (но вполне определённой) точки зрения окажется наиболее выгодным. Это и есть (несколько расплывчато сформулированная) задача об оптимальном управлении.
§ 1. Задача об оптимальном быстродействии
1.
Если мы будем рассматривать движение автомобиля по плоскости (а не по прямой), то фазовых координат будет четыре (две «географические» координаты и две компоненты скорости), а управляющих параметров – два (например, сила тяги двигателя и угол поворота руля). У летящего самолёта можно рассматривать шесть фазовых координат (три пространственные координаты и три компоненты скорости) и несколько управляющих параметров (тяга двигателя, величины, характеризующие положение рулей высоты и направления, элеронов).
Управляемый объект, о котором только что шла речь, в теории автоматического управления принято изображать так, как это показано на рис. 2. Величины u1,u2,…,ur (управляющие параметры) часто называют также «входными переменными», а величины x1, x2,…,xn (фазовые координаты) – «выходными переменными». Говорят ещё, что «на вход» объекта поданы величины u1,u2,…,ur, а «на выходе» мы получаем величины x1, x2,…,xn. Разумеется, на рис. 2 показано лишь условное обозначение управляемого объекта и никак не отражено его «внутреннее устройство», знание которого необходимо, чтобы выяснить, каким образом, зная управляющие функции u1(t),u2(t),…,ur(t), можно вычислить изменение фазовых координат x1(t),x2(t),…,xn(t).
Величины u1,u2,…,ur удобно считать координатами некоторого вектораu=(u1,u2,…,ur), также называемого управляющим параметром (векторным). Точно так же величины x1, x2,…,xnудобно рассматривать как координаты некоторого вектора (или точки) x=(x1, x2,…,xn) в n – мерном пространстве с координатами x1, x2,…,xn. Эту точку называют фазовым состоянием объекта, а n – мерное пространство, в котором в виде точек изображаются фазовые состояния, называется фазовым пространством рассматриваемого объекта. Если объект таков, что его фазовое состояние характеризуется только двумя фазовыми координатами x1, x2 (см. рис. 1), то мы будем говорить о фазовой плоскости. В этом случае фазовые состояния объекта изображаются особенно наглядно.