Смекни!
smekni.com

Синтез оптимальных уравнений (стр. 8 из 9)

§ 5. Решение задачи синтеза для линейных задач второго порядка

13. Упрощение уравнений линейного управляемого объекта. Нередко бывает, что в линейной задаче общая запись уравнений движения объекта в виде (2.1) неудобна и целесообразно воспользоваться некоторыми упрощениями. Мы здесь отметим стандартные упрощения, которые можно осуществить с помощью замены координат.

- Прежде всего, рассмотрим вопрос о замене координат в фазовом пространстве X рассматриваемого управляемого объекта. Предположим, что в пространстве X вместо координат x1,…, xn введены новые координаты y1,…, yn, связанные с прежними координатами соотношениями

(2.13)

(где матрицы P=(pij) и Q=(qij) взаимно обратны). Ясно, что при такой замене линейная система (2.1) превращается в новую линейную систему

коэффициенты которой легко вычисляются:

Таким образом,

,

Переходя к векторным обозначениям, можно сказать, что указанная замена координат переводит уравнение (2.5) в уравнение

где матрицы C и D выражаются через матрицы A, B, P, Q по формулам C=QAP, D=QB.

Очевидно, при такой замене условия 1), 2), указанные на стр. 15, сохраняются и для уравнения

получаемого после замены. Далее, каждый процесс (u(t), x(t)), удовлетворяющий уравнению
переходит в процесс (u(t), y(t)), удовлетворяющий уравнению
(и обратно). Так как при этом время t не меняется, то указанная замена переводит оптимальные процессы для уравнения
(и наоборот). В частности, синтез оптимальных управлений для уравнения
переводится с помощью преобразования координат (2.13) в синтез оптимальных управлений для уравнения
.

Таким образом, если уравнение

окажется проще и для него синтез оптимальных управлений можно будет построить, то из этого синтеза можно (с помощью афинного преобразования (2.13)) получит синтез и для первоначального уравнения
. В этом и заключается смысл замены координат (2.13): она позволяет заменить матрицу A трансформированной матрицей C=QAP, в то же время вызывая лишь афинное искажение картины синтеза оптимальных управлений. Таким образом, преобразованием (2.13) можно воспользоваться для упрощения матрицы A, составленной из коэффициентов при фазовых координатах.

- Предположим, что в уравнении

матрица A уже приведена к простейшему виду (с помощью описанного выше приёма). Укажем теперь, каким образом может быть упрощена матрица B, составленная из коэффициентов при управляющих параметрах.

С этой целью положим

(2.14)

Это означает, что вместо r управляющих параметров u1,…,ur вводятся n других управляющих параметров v1,…, vn, благодаря чему система (2.1) заменяется следующей:

или в векторной форме,

Нужно только выяснить, в каких пределах может изменяться точка v=(v1, v2,…, vn). Удобно считать, что эта точка v=(v1, v2,…, vn) расположена в том же пространстве X, что и точка x=(x1,…, xn).

Соотношения (2.14) определяют линейное отображение r-мерного пространства переменных u1,…,ur в фазовое пространство X. Образом многогранника U при отображении (2.14) является некоторый выпуклый многогранник в пространстве X, который мы обозначим через V.

Таким образом, получаем два линейных уравнения:

(2.15)

(2.16)

Г л а в а III

СИНТЕЗ ОПТИМАЛЬНЫХ УПРАВЛЕНИЙ ДЛЯ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА

§ 6. Решение задачи синтеза в случае комплексных собственных значений

14. Задача синтеза для малых колебаний маятника. Здесь будет дано полное решение задачи синтеза оптимальных управлений для линейных объектов, описываемых уравнениями второго порядка. Фазовое пространство X в этом случае представляет собой плоскость.

Рассмотрим колебание плоского маятника. Как известно колебание маятника, подвешенного к точке опоры, описывается дифференциальным уравнением второго порядка:

(в нашем случае положим β=1)

при малых колебаниях маятника Sinφ≈φ тогда уравнение движения маятника запишется в виде:

(3.1)

Управляющий параметр u (скалярный) будем предполагать изменяющимся в пределах -1£u£1.

Пусть

— угол отклонения, а
— скорость маятника. Тогда уравнение (3.1) перепишется в виде следующей нормальной системы:

(3.2)

На плоскости x1, x2 «многогранник» U будет представляться отрезком [-1, 1], расположенным на оси x2. Легко видеть, что ось x2 не является собственным инвариантным подпространством матрицы A, которая для системы (3.2) имеет вид:

A=

,

и потому условие общности положения всегда выполнено.

Найдём собственные значения матрицы A. Для этого составим характеристическое уравнение |λE─A|=0, т. е. λ2+λ+1=0. Откуда находим, что собственные значения матрицы A такие:

т. е. собственные значения матрицы A комплексные. Введём обозначения

где b≠0.

Тогда матрица A преобразуется к виду:

=
.

Будем рассматривать систему, соответствующую матрице

, т. е. систему вида:

(3.3)

Вначале рассмотрим соответствующую однородную систему:

(3.4)

Общее решение этой системы имеет вид:

где c, γ – произвольные постоянные интегрирования.

Запишем функцию H и применим принцип максимума.

где ψ1, ψ2определяются системой, сопряжённой к системе (3.3), т. е. системой вида:

(3.5)

Общее решение этой системы имеет вид:

где c’, γ’ – произвольные постоянные интегрирования. Т. е. функция H имеет вид:

Подставим в функцию H представление решений x1, x2:

Т. к. собственный вектор матрицы A, соответствующий собственному значению l имеет вид q1iq2, где q1=(1;─1/2); q2=(0;─

).

Пусть q1 и q2 – базисные векторы новой косоугольной системы координат y1, y2. Тогда переход от системы y1, y2 к системе x1, x2 выражается формулами:

Тогда в новых координатах система уравнений (3.2) запишется в виде