D=STS=S2, S-1DS-1=I. (22)
Определим матрицу
U=AVS-1 (23)
Из (21), (22), (23) и ортогональности V следует, что
UTU=S-1VTATAVS-1=S-1DS-1=I т.е. U ортогональна. Из (23) и ортогональности V выводим USVT=AVS-1SVT=AVVT=A Лемма доказана.
Доказательство теоремы 5. Пусть A=HRKT, где H, R, KT имеют свойства, указанные в теореме 4. Так как R11 из (19) – невырожденная треугольная к´к–матрица, то согласно лемме 2 , можно написать
Здесь
где:
Теперь, определяя U и V формулами
заключаем из (24) – (26), что A=USVT, где U, S, V имеют свойства, указанные в формулировке теоремы 5. Это завершает доказательство.
Заметим, что сингулярные числа матрицы А определены однозначно, в то время, как в выборе ортогональных матриц U, V есть произвол. Пусть s – сингулярное число А, имеющее кратность l. Это значит, что для упорядоченных сингулярных чисел найдется индекс I такой, что
Положим k=min(m,n), и пусть Q – ортогональная к´к–матрица вида
Здесь Р – ортогональная l´l–матрица Если A=USVT – сингулярное разложение А и si=…=si+l-1, то сингулярным разложением А будет также и
Некоторые вычислительные задачи поразительно чувствительны к изменению данных. Этот аспект численного анализа не зависит от плавающей арифметики или выбранного алгоритма.
Например:
Найти корни полинома: (x-2)2=10-6
Корни этого уравнения есть 2+10-3 и 2-10-3. Однако изменение свободного члена на 10-6 может вызвать изменение в корнях, равное 10-3.
Операции с матрицами, как правило, приводят к решению систем линейных уравнений. Коэффициенты матрицы в правой части системы линейных уравнений редко известны точно. Некоторые системы возникают из эксперимента, и тогда коэффициенты подвержены ошибкам наблюдения. Коэффициенты других систем записываются формулами, что влечет за собой ошибки округлений. В связи с этим необходимо знать, как влияют ошибки в коэффициентах матрицы на решение. Именно для этого вводится понятие обусловленности матрицы.
По определению число обусловленности есть величина
Нормой вектора x в пространстве векторов
1) положительной определенности –
2) положительной однородности –
3) неравенству треугольника –
Нормой квадратной матрицы А в пространстве матриц, согласованной с нормой вектора
1)
2)
3)
4) мультипликативное неравенство –
Наиболее употребимы следующие нормы для векторов:
· норма суммы модулей
· евклидова норма
· норма максимума модуля
Нормы матриц:
·
·
·
Здесь
Умножение вектора х на матрицу А приводит к новому вектору Ах, норма которого может очень сильно отличаться от нормы вектора х.
Область изменений может быть задана двумя числами
Максимум и минимум берутся по всем ненулевым векторам. Заметим, что если А вырождена, то m=0. Отношение M/m называется числом обусловленности матрицы А,
Рассмотрим норму обратной[6] матрицы
Для матрицы А существует сингулярное разложение
Рассмотрим систему уравнений Ax=b, и другую систему, полученную изменением правой части: A(x+Dx)=b+Db . Будем считать Db ошибкой в b, а Dx соответствующей ошибкой в x, хотя нам нет необходимости считать ошибки малыми. Поскольку A(Dx)=Db, то определения M и m немедленно приводят к неравенствам
Величина