Смекни!
smekni.com

Основные понятия дифференциального исчисления и история их развития (Бакалавр) (стр. 3 из 9)

4) Постоянный множитель можно выносить за знак неопределённого интеграла, то есть

а f(х)dх = а f(х)dх (а¹ 0)
Доказательство. Продифференцируем обучение части равенства. Тогда получим
d а f(х)dх = а f(х)dх (по свойству 2)

и d [ a f(х)dx ] = ad f(х)dх =а f(х)dх

(в силу свойства дифференциала)

Таким образом, дифференциалы функций
аf(х) и аf(х) равны, а потому эти функции отличаются друг от друга на постоянную величину, то есть, аf(х) = = аf(х) * + С. Но постоянную С можно считать включённой в состав неопределённого интеграла, следовательно,

а f(х) = а f(х)dх.

5)

Интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от слагаемых функций, например:

[f1(х) + f2(х) – f3(х)] = f1(х) + f3(х)f3(х)(v)

Доказательство: Продифференцируем обе части равенства.

Дифференцирование любой части равенства даёт:

d [f1(х) + f2(х) – f3(х)]dх = [f1(х) + f2(х) – f3(х)]

В результате дифференцирования правой части равенства (v), получается дифференциал алгебраической суммы нескольких функций, который как известно равен алгебраической сумме дифференциалов слагаемых функций. Следовательно,
d[ f1(х) + f2(х) f3(х)] =

= d f1(х) + f2(х) f3(х)

Применяя свойство 1, в правой части последнего равенства получаем

f1(х) + f2(х) f3(х)= [ f1(х) + f2(х) – f3(х)]

Итак, после дифференцирования обеих частей равенства (v) получены тождественные результаты, следовательно, справедлива формула (v) (см. доказательство свойства 3).

2.4. Метод непосредственного интегрирования.

Определение. Непосредственным интегрированием называется интегрирование заключающееся в прямом применении формул таблицы основных интегралов. Чтобы найти неопределённый интеграл от какой–нибудь функции f(х), нужно прежде всего отыскать в таблице интегралов формулу в левой части которой стоит интеграл такого же вида, как данный, и записать ответ в соответствии с правой частью этой формулы.

Примеры.

1)

х7
Решение. х7dх = + С

2)

2 3х2
Решение. Имеем 2 3х2dх = 2х2/3
Применяя формулы, получаем 2х2/3dх = 2 х2/3 = 2 + С.

Таким образом, 2х2/3dх = х 3х2 + С.

3)

Решение. Согласно известному свойству дифференциала, 3dх = d(), а потому

=

Применяя формулу, получаем tg3х + С

В тех случаях, когда под знаком интеграла стоит алгебраическая сумма обычно разлагают данный интеграл на сумму нескольких интегралов, из которых каждый можно найти по соответствующей формуле.

3)

(2х3 + 9х2 – 5 х + 4/ х )
Решение. (2х3 + 9х2 – 5 х + 4/ х )dх =

= 2 х3 + 9 х2 – 5 х1/2 + 4 / х =

= 2 + 9 – 5 + 4 * 2 х + С =

= х4 / 2 + 3х3 – 10/3 хх + 8 х + С.

2.5. Метод замены переменной (способ подстановки).

Наиболее общим приёмом интегрирования функций является способ подстановки, который применяется тогда, когда искомый интеграл f(х) не является табличным, но путём но путём ряда элементарных преобразований он может быть сведён к табличному.
Метод подстановки основан на применении следующей формулы:

f(х) = f[j(t)]j’(t)dt, (1)

где х = j(t) – дифференцируемая функция от t, производная которой j’(t) сохраняет знак для рассматриваемых значений переменных.

Сущность применения этой формулы состоит в том, что в данном интеграле f(х) переменная х заменяется переменной t по формуле х = j(t) и, следовательно, произведением j’(t)dt.
Справедливость формулы (1) будет доказана если после дифференцирования обеих её частей получатся одинаковые выражения. Продифференцировав левую часть формулы, имеем

d [ f(х) ] = f(х)dх = f [j(t)] j’(t)dt