v(a), очевидно, содержится в nЧN мерном линейном подпространстве
которое назовем формой a(Ч) в широком смысле.
Форму в широком смысле любого изображения a(Ч), у которого не обязательно различны яркости и цвета на различных подмножествах Ai ,i=1,...,N, определим как линейное подпространство
Изображения из конуса(4***) имеют форму, которая не сложнее, чем форма a(Ч) (4), поскольку некоторые из них могут иметь одно и то же значение яркости или(и) цвета на различных множествах Аi, i=1,…………..,N. Также множества оказываются, по существу, объединенными в одно, что и приводит к упрощению формы изображения, поскольку оно отражает меньше деталей формы изображенного объекта, чем изображение (4). Это замечание касается и L(a(Ч)), если речь идет о форме в широком смысле.
Лемма 3. Пусть {Аi} - измеримое разбиение X:
Изображение (3) имеет на каждом подмножестве Ai :
- постоянную яркость
- постоянный цвет
- постоянную яркость fi , i=1,...,N, если и только если в (3)
Доказательство . На множестве Ai яркость и цвет изображения (3) равны соответственно[6]
Если выполнено равенство (4), то
Если
Цвет изображения определяется как электродинамическими свойствами поверхности изображенного объекта, так и спектральным составом облучающего электромагнитного излучения в том диапазоне, который используется для регистрации изображения. Речь идет о спектральном составе излучения, покидающего поверхность объекта и содержащего как рассеянное так и собственное излучения объекта. Поскольку спектральный состав падающего излучения, как правило, пространственно однороден, можно считать, что цвет изображения несет информацию о свойствах поверхности объекта, о ее форме, а яркость в значительной степени зависит и от условий “освещения”. Поэтому на практике в задачах морфологического анализа цветных изображений сцен важное значение имеет понятие формы изображения, имеющего постоянный цвет и произвольное распределение яркости в пределах заданных подмножеств Ai , i=1,...,N, поля зрения X.
Итак, пусть в согласии с леммой 3
где,
в пределах Ai при постоянном цвете
причем для изображения (5) цвета j(i), i=1,.…..,N, считаются попарно различными, а функции g(i), i=1,.…..,N, - удовлетворяющими условиям