Если при умножении 5 на
т.е. совсем другой ответ, чем раньше. Кроме того, общее определение умножения затушевывает необходимость нового определения при умножении на дробь.
Перед введением определения действия умножения на дробь рассматривается решение задачи на нахождение части числа. В программе и в стабильном учебнике эта задача носит название: „нахождения дроби числа". Замена слова „части” словом „дроби" вызвана, очевидно, расширением рассматриваемой задачи; в стабильном учебнике рассматриваются и такие задачи, например: „найти
Первая группа упражнений.
Пример. Найти
Решение.
Вторая группа упражнений: нахождение части от целого числа,
когда искомая доля - дробь.
Пример. Найти
Решение.
В дальнейшем записи следует сокращать.
Пример. Найти
Третья группа упражнений: нахождение части от дроби.
Пример. Найти
Решение.
или
Следует подчеркнуть на соответствующих конкретных задачах, что найти часть от дроби - значит определить, какую часть от целого составляет часть от части этого целого.
Пример.
Рожью засеяно
Рассмотрим рисунок 10, где заштрихован участок земли, отведенный под хлебные культуры. Из участка, отведенного под хлебные культуры, выделена часть под рожь (рис.11).
Рис.10 Рис.11
Формулировку задачи „найти дробь числа” следует вводить не cразу, сначала пользоваться старой формулировкой „найти часть числа”, конкретный смысл которой учащимся вполне ясен. К новой формулировке можно приучить постепенно, напоминая, что дробью называется одна или несколько равных частей единицы. Введение термина „дробь числа” облегчит формулировку задач, например, „найти
Проработке задачи нахождения дроби числа следует посвятить достаточное количество времени; это создаст прочную базу для изучения умножения на дробь. Часть трудных вопросов этой темы будет, таким образом выделена и подготовлена. А именно: что значит найти дробь числа? Как найти? Какие могут быть случаи? Как записать формулу решения в виде дроби? При этом можно рассмотреть и сокращение дроби, когда числитель и знаменатель представляют произведение.
Перейдем теперь к изложению той методики преподавания умножения на дробь, которая получила в настоящее время признание в педагогической практике и в учебно-методической литературе. Можно подвести учащихся к новому определению умножения путем решения геометрической задачи на вычисление площади прямоугольника.
Предварительно рассматривается вычисление площади прямоугольника, у которого длины сторон - дробные числа, путем подсчета долей квадратной единицы, из которых может быть составлен прямоугольник, без знания умножения дробей.
Далее предлагаются задачи примерно такого содержания:
Вычислить площадь прямоугольника, у которого
1) основание 10 см, высота 6 см,
2) основание 7
Площадь первого прямоугольника учащиеся находят, пользуясь правилом для вычисления площади прямоугольника. Для второго прямоугольника преподаватель предлагает проверить справедливость правила. Учащиеся ив чертежа находят, что в одном ряду укладывается 7
Затем предлагается нарисовать прямоугольник, основание которого 4 см, а высота 1 см; затушевать на этом чертеже прямоугольник, у которого основание 4 см, а высота
Чтобы выяснить смысл умножения 4 на
После этого записывают 4·
Затем предлагается построить второй прямоугольник, основание
|
Рис.12 Рис.13
Учащиеся получают 4·
Следует повторить эти рассуждения с прямоугольником, основание которого 2 дм и высота 1 дм, и установить, что значит 2·
Вообще условились считать, что умножить число на дробь - значит найти эту дробь множимого. Умножить число на правильную дробь - значит найти часть числа, которая выражена этой дробью.
Можно показать целесообразность определения умножения на дробь на решении следующих арифметических задач.
Автомобиль едет со скоростью 45 км в час. 1) Какое расстояние он пройдет в 3 часа? в 7 часов? в