Смекни!
smekni.com

Математический анализ (стр. 3 из 8)

aN£c£bN=>-bN£-c£-aN => aN-bN£c’-c£bN-aN => (По теореме о предельном переходе) => Lim(aN-bN)£Lim(c’-c)£Lim(bN-aN) => (a-b)£Lim(c`-c)£(b-a) =>

0£lim(c`-c)£0 => 0£(c`-c)£0 => c’=c => c - единственное.

Перефразировка Леммы: Пусть имеется бесконечнаz посл-ть вложенных друг в друга промежутков (промежуток 1 вложен в промежуток 2 если все точки промежутка 1 принадлежат промежутку 2: [a1,b1],[a2,b2],...,[an,bn]..., так что каждый последующий содержится в предыдущем, причем длины этих промежутков стремятся к 0 при n®¥ lim(bN-aN)=0, тогда концы промежутков aN и bN стремятся к общему пределу с (с разных сторон).

42.Локальный экстремум. Теорема Ферма и ее приложение к нахождению наибольших и наименьших значений.

Определение: Пусть задан промежуток I=(a;b), точка x0Î(a;b). Точка x0, называется точкой локалниого min(max), если для всех xÎ(a;b), выполняется

f(x0)<f(x) (f(x0)>f(x)).

Лемма: Пусть функция f(x) имеет конечную производную в точке x0. Если эта производная f‘(x0)>0(f‘(x0)<0), то для значений х, достаточно близких к x0 справа, будет f(x)>f(x0) (f(x)<f(x0)), а для значений x, достаточно близких слева, будет f(x)<f(x0) (f(x)>f(x0)).

Доказательство: По определению производной,

.

Если f‘(x0)>0, то найдется такая окрестность (x0-d,x0+d) точки x0, в которой (при х¹x0) (f(x)-f(x0))/(x-x0)>0. Пусть x0<x<x+d, так что х-х0>0 => из предыдущего неравенства следует, что f(x)-f(x0)>0, т.е. f(x)>f(x0). Если же x-d<x<x0 и х-х0<0, то очевидно и f(x)-f(x0)<0, т.е. f(x)<f(x0). Ч.т.д.

Теорема Ферма: Пусть функция f(x) определена в некотором промежутке I=(a;b) и во внутренней точке x0 этого промежутка принимает наибольшее (наименьшее) значение. Если функция f(x) дифференцируема в точке x0, то необходимо f‘(x0)=0.

Доказательство: Пусть для определенности f(x) принимает наибольшее значение в точке x0. Предположение, что f‘(x0)¹0, приводит к противоречию: либо f‘(x0)>0, и тогда (по лемме) f(x)>f(x0), если x>x0 и достаточно близко к x0, либо f‘(x0)<0, и тогда f(x)>f(x0), если x<x0 и достаточно близко к x0. В обоих случаях f(x0) не может быть наибольшим значением функции f(x) в промежутке I=(a;b) => получили противоречие => теорема доказана.

Следствие: Если существует наибольшее (наименьшее) значение функции на [a;b] то оно достигается либо на концах промежутка, либо в точках, где производной нет, либо она равна нулю.

43.Теоремы Ролля, Лагранжа, Коши (о среднем значении).

Теорема Ролля

Пусть 1) f(x) определена и непрерывна в замкнутом промежутке [a;b]

2) сущестует конечная производная f’(x), по крайней мере в отткрытом промежутке (a;b)

3) на концах промежутка функция принимает равные значения: f(a)=f(b)

Тогда между a и b найдется такая точка c(a<c<b), что f’(с)=0.

Доказательство: f(x) непрерывна в замкнутом промежутке [a;b] и потому, по второй теореме Вейерштрасса (Если f(x), определена и непрерывна в замкну том промежутке [a;b], то она достигает в этом промежутке своих точных верхней и нижней границ), принимает в этом промежутке как свое наибольшее значение M, так и свое наименьшее значение m.

Рассмотрим два случая:

1) M=m. Тогда f(x) в промежутке [a;b] сохраняет постоянное значение: неравенство m£f(x)£M в этом случае "x дает f(x)=M => f’(x)=0 во всем промежутке, так что в качестве с можно взять любую точку из (a;b).

2) M>m. По второй теореме Вейерштрасса оба эти значения функцией достигаются, но, так как f(a)=f(b), то хоть одно из них достигается в некоторой точ ке с между a и b. В таком случае из теоремы Ферма (Пусть функция f(x) определена в некотором промежутке I=(a;b) и во внутренней точке x0 этого промежутка принимает наибольшее (наименьшее) значение. Если функция f(x) дифференцируема в точке x0, то необходимо f‘(x0)=0) следует, что произ водная f’(с) в этой точке обращается в нуль.

Теорема Коши:

Пусть 1) f(x) и g(x) непрерывны в замкнутом промежутке [a;b] & g(b)¹g(a)

2) сущестуют конечные производные f’(x) и g’(x), по крайней мере в отткрытом промежутке (a;b)

3) g’(x)¹0 в отткрытом промежутке (a;b)

Тогда между a и b найдется такая точка c(a<c<b), что

Доказательство: Рассмотрим вспомогательную функцию h(x)=[f(x) - f(a) -

*(g(x) - g(a))]

Эта функция удовлетворяет всем условиям теоремы Ролля:

1) h(x) непрерывна на [a;b], как комбинация непрерывных функций

2) сущестует конечная производная h’(x) в (a;b), которая равна h’(x)=f’(x) -

*g’(x)

3) прямой подстановкой убеждаемся h(a)=h(b)=0

Вследствие этого в промежутке (a;b) существует такая точка с, что h’(x)=0 => f’(c) -

*g’(c) или f’(c) =
*g’(c).

Разделив обе части равенства на g’(x) (g’(x)¹0) получаем требуемое равенство.

Теорема Лагранжа:

Пусть 1) f(x) определена и непрерывна в замкнутом промежутке [a;b]

2) сущестует конечная производная f’(x), по крайней мере в отткрытом промежутке (a;b)

Тогда между a и b найдется такая точка c(a<c<b), что

Доказательство: По теореме Коши, полагая g(x)=x, имеем:

Промежуточное значение с удобно записывать в виде с=а+q(b-a), где qÎ(0;1). Тогда принимая x0=a, (b-a)=h, мы получаем следующее следствие:

Следствие: Пусть f(x) дифференцируема в интервале I=(a;b), x0ÎI, x0+hÎI, тогда $ qÎ(0;1): f(x0+h)-f(x0)=f’(x0+qh)*h ([x0;x0+h] h>0, [x0+h;x0] h<0)

11. Подпоследовательности. Теорема Больцано-Вейерштрасса.

Определение: Пусть аN некоторая числовая посл-ть и kN-строго возрастающая посл-ть N чисел. В результате композиции ф-ций n®aN и n®kN получа ем посл-ть aKn-которая наз. подпосл-тью посл-ти aN=>подпосл-сть - это либо сама посл-ть либо исходная посл-ть, из которой выбросили часть членов.

Теорема: Если Lim аN=а, то и Lim аKn=а.

Доказательство: Вне любой Е-окрестности точки а лежит конечное число членов последовательности аn и в частности последовательности.

Доказательство: Пусть для заданного Е нашлось n0: "n>n0N-а|<Е, ввиду того что kN®¥ существует и такое n’, что при всех n>n’ kN>n0 тогда при тех же значениях n будет верно |аKn-а|<Е

Теорема Больцано-Вейерштрасса: Из всякой ограниченной последовательности можно выделить сходящуюся подпоследовательность.

Доказательство: хN - ограничена => "n: а£хN£b. Поделим промежуток [a,b] пополам, хотя бы в одной его половине содержится бесконечное множество членов посл-ти хN (в противном случае и во всем промежутке содержится конечное число членов посл-ти, что невозможно). Пусть [а1,b1] - та половиа, которая содержит бесконечное число членов посл-ти. Аналогично выделим на промежутке [а1,b1] промежуток [а2,b2] также содержащий бесконечное число членов посл-ти хN. Продолжая процесс до бесконечности на к-том шаге выделим промежуток [аK,bK]-также содержащий содержащий бесконеч ное число членов посл-ти хN. Длина к-того промежутка равна bKK = (b-a)/2K, кроме того она стремится к 0 при к®¥ и аK³аK+1 & bK£bK+1. Отсюда по лемме о вложенных промежутках $! с: "n аN£c£bN.

Теперь построим подпоследовательность:

хN1 Î[а1,b1]

хN2 Î[а2,b2] n2>n1

. . .

хNKÎ[аK,bK] nK>nK-1

а£хNk£b. (Lim aK=LimbK=c из леммы о вложенных промежутках)

Отсюда по лемме о зажатой последовательности Lim хNk=c - ч.т.д.

12.Верхний и нижний пределы последовательности.

xN - ограниченная последовательность =>"n аN£хN£bN

хNK®х, так как хNK-подпоследовательность => "n а£хN£b =>а£х£b

х - частичный предел последовательности хN

Пусть М - множество всех частичных пределов.

Множество М ограничено (а£М£b) => $ SupM & $ InfM

Верхним пределом посл-ти xN называют SupM¹Sup{xN}: пишут Lim xN

Нижним предел ом посл-ти xn называют InfM¹Inf{xN}: пишут lim xN

Cуществование нижнего и верхнего пределов вытекает из определения.

Достижимость:

Теорема: Если хN ограничена сверху (снизу), то $ подпосл-ть хNK: предел которой равен верхнему (нижнему) пределу хN.

Доказательство: Пусть х=SupM=верхний предел хN

$ х’ÎМ: х-1/к<х’ (следует из того что х - SupМ), т.к. х’ÎМ => $ подпоследовательность хNS®х’ => "Е>0 (в частности Е=1/к) $ s0: "s>s0 =>

х’-1/к<хNS<х’+1/к

х -1/к-1/к<х’-1/к<хNS<х’+1/к<х+1/к (т.к.х-1/к<х’ и х’<х=SupМ)

х-2/к<хNS<х+1/к

Берем к=1: х-2<хNS<х+1, т.е $ s0: "s>s0 это неравенство выполняется берем член посл-ти хNS с номером больше s0 и нумеруем его хN1

k=1: х-2/1<хN1<х+1/1

k=2: х-2/2<хN2<х+1/2 n1<n2

...

k=k: х-2/к<хNK<х+1/к nK-1<nK

При к®¥ хNK®х

13.Фундаментальные последовательности.

Определение: Последовательность {аN} - называется фундаментальной, если "Е>0 $ n0: "n>n0 и любого рÎN выполнено неравенство |аN+р-аN|<Е. Геометрически это означает что "Е>0 $ n0, такой что расстояние между любыми двумя членами посл-ти, с большими чем n0 номерами, меньше Е.