Смекни!
smekni.com

Математический анализ (стр. 2 из 8)

Теорема: Произведение бм и ограниченной последовательности - бм последовательность.

Доказательство: Пусть aN - бм посл-ть, bN - ограниченная посл-ть zN=aN*bN.

Т.к. bN - ограниченная посл-ть, значит $ такое с: |bN|£с¹0

Т.к. aN - бм посл-ть, значит вне любой Е-окрестности точки 0 (в частности Е/с)лежит конечное число членов посл-ти aN, т.е. $ n0: "n>n0 |aN|<Е/с.Таким образом "n>n0: |zN|=|aN*bN|=|aN|*|bN|<Е/с * с=Е

Следствие: произведение бм посл-тей - тоже бм посл-ть

Теорема: Пусть aN - бм. Если $ n’: "n>n’ последовательностьть |bN|£aN => bN - бм

Доказательство: aN - бм => $ n”: "n>n”: |aN|<Е. Для n>=max{n’,n”} |bN|£|aN|<Е

Определение: Последовательность аN называется бесконечно большой (бб) если "Е>0 $ n0: n>n0N|>Е)

Теорема: Если aN - бм, то 1/aN - бб последовательностьть, обратное тоже верно.

Доказательство:

"=>" aN-бм=>вне любой эпсилон-окрестности точки 0 (в частности 1/Е) находится конечное число членов посл-ти, т.е. $n0: "n>n0 |aN|<1/E =>1/|aN|>Е.

"<=" 1/|aN| - бб последовательность => "Е>0 $ n0: "n>n0 1/|aN|>1/Е => |aN|<Е

Теорема: Пусть aN - бб. Если $ n’: "n>n’ последовательность bN³|aN| => bN - бб.

Доказательство: aN - бб => $ n”: "n>n” |aN|>Е. Для n>max{n’,n”} bN³|aN|>Е

7.Арифметика пределов

Предложение: Число а является пределом последовательности aN если разность aN-a является бм (обратное тоже верно)

Докозательство: Т.к. Lim aN=a, то |aN-a|<Е. Пусть aN=aN-a. |aN|=|aN-a|<Е

Обратное: Пусть aN=aN-a, т.к. aN - бм => |aN|£Е. |aN|=|aN-a|<Е

Теорема: Если Lim xN=x, Lim yN=y, то:

1. $ Lim (xN+yN) и Lim (xN+yN)=х+у

2. $ Lim (xN*yN) и Lim (xN*yN)=х*у

3. "n yN¹0 & y¹0 => $ Lim (xN/yN) и Lim(xN/yN)=х/у

Доказательство:

Пусть xN=х+aN, aN - бм; yN=у+bN, bN - бм

1) (xN+yN)-(х+у)=aN+bN (По теореме о сумме бм: aN+bN - бм => (xN+yn)-(х+у)-бм, дальше по предложению)

2) xN*yN - х*у = х*aN+у*bN+aN*bN (По теоремам о сумме бм посл-тей и * бм посл-тей на огр. посл-ти получаем: xN*yN - х*у - бм, дальше по предл-нию)

3) xN/yN - х/у = (у*aN-х*bN) / (у*(у+bN))= (у*aN-х*bN) * 1/у * 1/уN доказательство сводится к доказательству утверждения: если уn - сходящаяся не к 0 посл-ть, то 1/уN тоже сходящаяся последовательность: Lim уN=y => по определению предела получаем $ n0: "n>n0 |уn-у|<у/2 (Е=y/2), что равносильно неравенству: у-у/2<уN<у/2+у, откуда получаем: |уN|³уN>у/2.|уN|>у/2=>1/|уN|<2/у => "n: 1/|уN|£max{2/у, 1/у1, 1/у2,...1/уno}

Теорема: Если хN сходится к х, yN сходится к у и $ n0: "n>n0 последовательность хN£уN, то х£у

Доказательство(от противного): Пусть х>у. Из опр. предела "E>0 (в частности Е<(у-х)/2): $n’: "n>n’ |xN-x|<E и $n”: "n>n” |yN-y|<E. Получаем "n>max{n’,n”} все члены посл-ти xN будут лежать в Е-окрестности точки х, а все члены посл-ти уN будут лежать в Е-окрестности точки у, причем

(х-Е,х+Е)Ç(у-Е,у+Е)=Æ. И т.к мы предположили, что х>у, то "n>max{n’,n”}: хNN - противоречие с условием => х£у.

5. Определение предела последовательности и его единственность.

Определение: Пусть даны два множества Х и У. Если каждому элементу хÎХ сопоставлен по определенному правилу некоторый элемент уÎУ, то говорят, что на множестве Х определена функция f и пишут f:Х®У или х® (f(х)| хÎХ).

Определение: Последовательность-это ф-ция определенная на мн-ве N, со значениями во мн-ве R f:N®R. Значение такой ф-ции в (.) nÎN обозначают аN.

Способы задания:

1) Аналитический: Формула общего члена

2) Рекуррентный: (возвратная) формула: Любой член последовательности начиная с некоторого выражаетс через предидущие. При этом способе задани обычно указывают первый член (или нсколько начальных членов) и формулу, позволющкю определить любой член последовательности через предидущие. Пример: а1=а; аN+1N + а

3) Словесный: задание последовательности описанием: Пример: аN = n-ый десятичный знак числа Пи

Определение: Число а называется пределом последовательности аN, если "e>0$ n0:"n>n0 выполняется неравенство |аN-a|<e. Обозначение Lim aN=a.

Если не существует числа а, являющегося пределом посл-ти, то говорят что последовательность расходится, если существует, то сходится (к числу а).

Геометрически существование предела последовательности означает, что любой интервал вида (а-e,а+e), называемый эпсилон-окрестностью точки а, содержит все члены последовательности аN начиная с некоторого номера, или что то же самое, вне любой эпсилон-окрестности точки а находится ко нечное число членов последовательности аN.

Определение: Число а назывется пределом посл-ти аN если вне всякой окрестности точки а содержится конечное число членов последова тельности.

Теорема: Сходящаяся последовательность имеет только один предел.

Доказательство(от противного):

Пусть последовательность аN имеет предел а и предел с, причем а¹с. Выберем такой эпсилон, чтобы пересечение эпсилон-окрестностей точек а и с бы ло пусто. Очевидно достаточно взять эпсилон меньше |а-с|/2. Вне окрестности точки а содержится конечное число членов последовательности => в ок рестности точки с содержится конечное число членов последовательности - противоречие с условием того, что с - предел последовательности.

Теорема: Сходящаяся последовательность ограничена.

Доказательство:

Пусть последовательность аN сходится к числу а. Возьмем какое-либо эпсилон, вне эпсилон-окрестности точки а лежит конечное число членов последо вательности, значит всегда можно раздвинуть окрестность так, чтобы все члены последовательности в нее попали, а это и означает что последователь ность ограничена.

Замечания: 1) Обратное не верно (аn=(-1)N, ограничена но не сходится)

2) Если существует предел последовательности аN, то при отбрасывании или добавлении конечного числа членов предел не меняется.

Порядковые свойства пределов:

Теорема о предельном переходе: Если Lim xN=x, Lim yN=y, $n0: "n>n0 хN£yN, тогда x£y

Доказательство(от противного):

Пусть х>у => по определению предела $ n0’: "n>n0’ |хN-х|<E(берем Е<|х-у|/2): & $ n0”: "n>n0” |yN-y|<E. "n>max{n0’, n0”}: |хN-х|<|х-у|/2 & |уN-у|<|х-у|/2, т.е. получаем 2 интервала (у-Е,у+Е) & (х-Е,х+Е)], причем (у-Е,у+Е)Ç(х-Е,х+Е)=Æ. "n>max{n0’, n0”} хNÎ(х-Е,х+Е) & уNÎ(у-Е,у+Е) учитывая, что х>у получаем: "n>max{n0’, n0”} хN>yN - противоречие с условием.

Теорема: Если $n0: "n>n0 aN£bN£cN и $ Lim aN=a, $ Lim cN=c, причем a=c, то $ Lim bN=b => a=b=c.

Доказательство: Возьмем произвольно Е>0, тогда $ n’: "n>n’ => cN<(a+E) & $ n”: "n>n” => (a-E)<aN. При n>max{n0,n’,n”} (a-E)<aN£bN£cN<(a+E), т.е. " n>max{n0,n’,n”}=>bNÎ(a-E,a+E)

9. Предел монотонной последовательности

Определение: Последовательность называется монотонно возрастающей (убывающей) если " n1>n2 (n1<n2): xN1³xN2 (xN1£xN2).

Замечание: Если xN1 строго больше (меньше) xN2, тогда посл-ть называется строго монотонно возрастающая (убывающая) в случае нестрогости неравенства последовательность называется нестрого возрастающей (убывающей).

Теорема: Всякая ограниченная монотонная последовательность сходится.

Доказательство: Пусть хN ограниченная монотонно возрастающая последовательность. Х={xN: nÎN}

По теореме о существовании точной верхней грани у ограниченного множества имеем: $ SupX=x, "Е>0 $xE: (х-Е)<хE => $ n0 xNo>(х-E). Из монотон ности имеем: "n>n0 xN³xNo>(x-E), получили xN£x=SupX, значит "n>n0 xNÎ(x-E,х]<(x-E,x+E)

10.Лемма о вложенных промежутках

Определение: Пусть а,bÎR и а<b. Числовые множества вида 1-5 - называются числовыми промежутками:

1) Mножество хÎR: а£х£b (а<х<b) - называется отрезком (интервалом)

2) Mножество хÎR: а£х<b (а<х£b) - открытый справа (слева) промежуток

3) Mножество хÎR: а<х & x<b - открытый числовой луч

4) Mножество хÎR: а£х & х£b - числовой луч

5) Mножество хÎR - числовая прямая

Определение: Число b и а (если они существуют) называются правым и левым концами отрезка (далее промежутка), и его длина равна b-a

Лемма: Пусть aN монотонно возрастает, bN монотонно убывает, "n aN£bN и (bN-aN)-бм, тогда $! с: "n cÎ[aN,bN] (с Ç[aN,bN])

Доказательство:

aN£bN£b1 aN монтонно возрастает & aN£b1 => $ Lim aN=a

a1£aN£bN bN монтонно убывает & a1£bN => $ Lim bN=b

aN£a b£bN aN£bN => a£b

Lim (bN-aN)=b-a=0(по условию)=>a=b

Пусть c=a=b, тогда aN£c£bN

Пусть с не единственное: aN£c’£bN, с’¹с