Пример 28. Пусть φ ÎU0,2π, ξ = cos φ,η = sinφ— заведомо зависимые случайные величины. Но математическое ожидание их произведения равно произведению их математических ожиданий: по свойству E1
11.3 Моменты старших порядков. Дисперсия
Определение 40. Если
Число Dξ = E(ξ – Eξ)2 (центральный момент порядка 2) называется дисперсией случайной величины ξ
Пример 29. Пусть, скажем, случайная величина ξпринимает значение 0 с вероятностью 1-10-5 , и значение 100 с вероятностью 10-5. Посмотрим, как моменты разных порядков реагируют на большие, но маловероятные значения случайной величины.
Пример 30. Дисперсия Dξ = E(ξ – Eξ)2есть «среднее значение квадрата отклонения случайной величины ξ от своего среднего». Посмотрим, за что эта величина отвечает.
Пусть случайная величина ξ принимает значения +-1 с вероятностью 1/2, а случайная величина η — значения ю +-10 с вероятностью 1/2. Тогда Eξ = Eη = 0 поэтому Dξ = Eξ2 = 1, Dη = Eη2 = 100. Говорят, что дисперсия характеризует степень разброса значений случайной величины вокруг ее математического ожидания.
Если говорить о распределении случайной величины, как о распределении единичной массы по невесомому стержню, то дисперсия есть в точности момент инерции этого стержня, закрепленного в центре тяжести.
Определение 40. Если дисперсия величины ξ конечна, то число
Следует хорошо понимать, что из существования моментов больших порядков следует существование моментов меньших порядков. В частности, конечность второго момента (или дисперсии) влечет существование математического ожидания.
11.4 Свойства дисперсии
Все свойства дисперсии следуют из соответствующих свойств математического ожидания.
D1.
Действительно,
D2.
D3.
Доказательство. Дисперсия есть всего-навсего математическое ожидание п.н. неотрицательной с.в.:
Dξ = E(ξ – Eξ)2, и неотрицательность дисперсии следует из свойства E5. По тому же свойству, Dξ = 0 если и только если E(ξ – Eξ)2 = 0 п.н., то есть ξ = ξ п.н.
D4. Дисперсия не меняется от сдвига с.в. на постоянную:
D5. Если ξ и η независимы, то
Действительно,
так как математическое ожидание произведения независимых с.в. равно произведению их математических ожиданий.
D6. Минимум среднеквадратического отклонения случайной величины ξот точек вещественной прямой есть среднеквадратическое отклонение ξот своего математического ожидания:
Наименьший момент инерции стержня с распределенной на нем единичной массой получится, если точка вращения – центр тяжести стержня, а не любая другая точка.
Доказательство.
11.5 Математические ожидания и дисперсии стандартных распределений
Пример 31. Распределение Бернулли Вр,
Пример 32. Биномиальное распределение Вn,p
Воспользуемся свойством устойчивости биномиального распределения относительно суммирования — леммой 5. Возьмем n независимых случайных величин ξ1ξ2 … ξn, имеющих распределение Бернулли В,p = В1,p.
Тогда их сумма Sn= ξ1 + ξ2 +… + ξn имеет распределение Вn,p
так как все ξi одинаково распределены и их математическое ожидание равно pi;
поскольку ξi независимы и дисперсия каждой равна pq.
Пример 33. Геометрическое распределение Gp
При p Î (0,1)
Равенство (*) появилось из-за нежелания дифференцировать сумму геометрической прогрессии, которая начинается не с 0 а с q. Заметьте, что производная у добавленных слагаемых равна 0, так что производные от этих двух сумм равны
|
Поэтому
Пример 34. Распределение Пуассона Пλ
Показать, что
Пример 35. Равномерное распределение Ua,b
Пример 36. Стандартное нормальное распределение N0,1
поскольку под интегралом стоит нечетная функция, и сам интеграл абсолютно сходится (за счет быстро убывающей
Последнее равенство следует из того, что
|
|
Пример 37. Нормальное распределение
Мы знаем, что если
Поэтому
Пример 38. Показательное (экспоненциальное) распределение Еα
Найдем для произвольного kÎN момент порядка k.
В последнем равенстве мы воспользовались гамма-функцией Эйлера:
Пример 39. Стандартное распределение Коши С0,1
Распределение Коши. Говорят, что ξ имеет распределение Коши с параметрами α, σ2, где α ÎR, σ > 0, если
Распределение Коши имеет, например, абсцисса точки пересечения луча, посланного из точки (α, σ) под наудачу выбранным углом,