с>a, следовательно, с2—а2>0и величинаb—вещественна.
b2= с2—а2,
тогда
b2x2— a2y2 = a2b2 ,
или
Уравнение
определяющее гиперболу в некоторой системе декартовых прямоугольных координат, есть уравнение второй степени; таким образом, гипербола есть линия второго порядка.
Эксцентриситетом гиперболы называется отношение расстояния между фокусами этой гиперболы к расстоянию между ее вершинами; обозначив эксцентриситет буквой ε, получим:
Так как для гиперболы с>a, то ε>1; т. е. эксцентриситет каждой гиперболы больше единицы. Заметив, что c2= a2+b2, находим:
отсюда
Следовательно, эксцентриситет определяется отношением
Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньшеε2—1, тем меньше, следовательно, отношение
Рассмотрим какую-нибудь гиперболу и введем декартову прямоугольную систему координат так, чтобы эта гипербола определялась каноническим уравнением
Две прямые, перпендикулярные к той оси гиперболы, которая ее пересекает, и расположенные симметрично относительно центра на расстоянии
Уравнения директрис в выбранной системе координат имеют вид
Первую из них мы условимся называть левой, вторую —правой.
Так как для гиперболы ε >1,то
Отсюда следует, что правая директриса расположена между центром и правой вершиной гиперболы; аналогично, левая директриса расположена между центром и левой вершиной.
ПАРАБОЛА.
Фокус параболы принято обозначать буквой F, расстояние от фокуса до директрисы—буквой p. Величину р называют параметром параболы.
Пусть дана какая-нибудь парабола. Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у. Обозначим далее через r расстояние от точки М до фокуса (r=FM), через d—расстояние от точки М до директрисы. Точка М будет находиться на (данной) параболе в том и только в том случае, когда
r=d.
Чтобы получить искомое уравнение, нужно заменить переменныеr и d их выражениями через текущие координаты х, у.
Заметим, что фокус F имеет координаты
Обозначим через Q основание перпендикуляра, опущенногоиз точки Мна директрису. Очевидно, точка Q имеет координаты
число положительное; это следует из того, что М (х; у) должна находиться с той стороны от директрисы,гденаходится фокус, т. е. должно быть
Заменяя r и d, найдем
Это и есть уравнение рассматриваемой параболы, так как ему удовлетворяют координаты точки
М (х; у), когда точка М лежит на данной параболе.
Возведем обе части равенства в квадрат; получим:
или
у2=2рх.
Это уравнение называется каноническим уравнением параболы. Уравнение у2=2рх, определяющее параболу в некоторой системе декартовых прямоугольных координат, есть уравнение второй степени; таким образом, парабола есть линия второго порядка.
Министерство образования РФ
Пензенская Государственная Архитектурно-Строительная
Академия
РЕФЕРАТ
Тема: «Кривые и поверхности второго порядка»
Выполнил: Богданович Ольга
Специальность: ОБД
Обозначение: 240400 Группа: ОБД-11
Проверил: Фадеева Г.Д.
Оценка:
Пенза – 2000.
Кривые
второго
порядка
Поверхности
второго
порядка
Эллипсоид
Однополостный гиперболоид
Двухполостный гиперболоид
Конус
Эллиптический параболоид
Гиперболический параболоид
Эллиптический цилиндр
Гиперболический цилиндр
Параболический цилиндр