Смекни!
smekni.com

История тригонометрии в формулах и аксиомах (стр. 1 из 2)

Тригонометрические функции

Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников (trigwnon - треугольник, а metrew- измеряю).

В данном случае измерение треугольников следует понимать как решение треугольников, т.е. определение сторон, углов и других элементов треугольника, если даны некоторые из них. Большое количество практических задач, а также задач планиметрии, стереометрии, астрономии и других приводятся к задаче решения треугольников.

Возникновение тригонометрии связано с землемерением, астрономией и строительным делом.

Впервые способы решения треугольников, основанные на изависимостях между сторонами и углами треугольника, были найдены древнегреческими астрономами Гиппархом (2 в. до н .э.) и Клавдием Птолемеем (2 в. н. э.). Пожднее зависимости между отношениями сторон треугольника и его углами начали называть тригонометрическими функциями.

Значительный вклад в развитие тригонометрии внесли арабские ученые аль-Батани (850-929) и Абу-ль-Вефа Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10’ с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину.

Теорему тангенсов доказал Региомонтан (латинизированное имя немецкого астронома и математика Иоганна Мюллера (1436-1476)). Региомонтан составил также плдробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) – творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.

Долгое время тригонометрия носила чисто геометрический характер. Такою она была еще в средние века, хотя иногда в ней использовались и аналитические методы, особенно после появления логарифмов. Постепенно тригонометрия органически вошла в математический анализ, механику, физику и технические дисциплины.

Начиная с XVII в., тригонометрические функции начали применять к решению уравнений, задач механики, оптики, электричества, радиотехники, для описания колебательных процессов, распространения волн, движения различных механизмов, для изучения переменного электрического тока и т. д. Поэтому тригонометрические функции всесторонне и глубоко исследовались и приобрели важное значение для всей математики.

Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIII в. Леонардом Эйлером (1707-1783) членом Петербургской Академии наук.

Таким образом, тригонометрия, возникшая как наука о решении треугольников, со временем развилась и в науку о тригонометрических функциях.

Позднее часть тригонометрии, которая изучает свойства тригонометрических функций и зависимости между ними, начали называть гониометрией (в переводе – наука об измерении углов, от греч. gwnia - угол, metrew- измеряю). Термин гониометрия в последнее время практически не употребляется.

Изучение свойств тригонометрических функций и зависимостей между ними отнесено к школьному курсу алгебры, а решение треугольников – к курсу геометрии.

Тригонометрические функции острого угла


В прямоугольном треугольнике, имеющем данный угол a, отношения сторон не зависят от размеров треугольника. Рассмотрим два прямоугольных треугольника АВС и А1В1С1 (рис.1), имеющих равные углы ÐА=ÐА1 =a. Из подобия этих треугольников имеем:

Если величину угла a измерить, то написанные равенства остаются справедливыми, а измениться

лишь числовое значение отношений и т.д. Поэтому отношения
можно рассматривать как функции угла a.

b
b1


Рис.1.

Синусом острого угла называется отношение противоположного этому углукатета к гипотенузе. Обозначают это так:


sina=

Значения тригонометрических функций (отношений отрезков) являются отвлеченными числами.

Приближенные значения тригонометрических функций острого угла можно найти непосредственно согласно их определениям. Построив прямоугольный треугольник с острым углом aи измерив его стороны, согласно определениям мы можемвычислить значение, например, sina.

Пользуясь тем, что значения тригонометрических функций не зависят от размеров треугольника, для вычисления значений sin углов a=30°; 45°; 60° рассмотрим прямоугольный треугольник с углом a=30°; и катетом ВС=a=1, тогда гипотенуза этого треугольника с=2, а второй катет b=Ö3; рассмотрим также треугольник с углом a=45° и катетом a=1, тогда для этого треугольника c=Ö2 и b=1.

Полученные результаты запишем в таблицу.

30° 45° 60°
sina

Рис.2.

Приближенные значения тригонометрических функций для углов от 0° до 90° можно получить построив четверть круга, радиус которогопримем за 1, и его дугу разделимна 45 равных частей. Тогда градусная мера каждой части будет равна 2°.

90°N


0,79

а

АbС 0,620°M Рис.3.

Радиусы АМ и АN разделим на 100 равных частей. Построим прямоугольный треугольник с вершиной в центре круга и катетом совпадающим с радиусом АМ и гипотенузой АВ=1. Если угол ВАС=a, то по определению тригонометрических функций мы имеем:

sina=а

Для угла 52° на шкале радиуса АN находим, что а=0,79, а на шкале радиуса АМ находим, что b=0,62., то есть sin52°=0,79.

Построив прямоугольные треугольники для углов a=2°, 4°, 6°, 8°,…, 88°, согласно рис.3., найдем значения (при аккуратных измерениях и вычислениях) с точностью до 0,01. Для углов 0°и 90°прямоугольных треугольников не существует. Однако, если гипотенуза АВ будет стремиться по положению к радиусу АМ, то угол a®0, а катеты а®0 и b®1. В таком случае для полноты значений тригонометрических функций принимают, что

sin0°=а=0; cos0°=b=1.

Что касается значений tga и ctga, то при a®0 отношение ®0, т.е. , а отношение при a®0 неограниченно возрастает. Этот результат записывают как ®¥, где символ ¥ указывает, что величина неограниченно возрастает и не может быть выражена никаким числом, так как знак ¥ не является каким-либо числом. Таким образом, принимают, что tg0°=0, а ctg0°не существует, что чаще записывают какctg0°=¥.