Формула, устанавливающая связь между площадями граней прямоугольного тетраэдра, является аналогом теоремы Пифагора для трехмерных фигур и поэтому имеет большую теоретическую значимость.
ІV. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ СВОЙСТВ ПРЯМОУГОЛЬНОГО ТЕТРАЭДРА
Результаты исследований можно использовать при решении задач на факультативных занятиях по темам «Пирамида» и «Прямоугольный параллелепипед» в средней школе. С использованием свойств прямоугольного тетраэдра можно найти более рациональные и упрощенные варианты решения задач по сравнению с традиционными методами.
Например: задача №96 (стр.131) учебного пособия: В.М.Клопский, З.А.Скопец, М.И.Ягодовский. Геометрия.-М.: Просвещение, 1979.
Основанием пирамиды служит прямоугольный треугольник с катетами а и b, высота пирамиды проходит через вершину прямого угла основания и равна Н. Найти площадь полной поверхности.
А
Дано:
основанием является прямоугольный H
треугольник ОВС с катетами а и b ВОА = Н, высота.
Найти: b
S
полн. О Да
С
1) Решение по традиционной схеме:
S полн. = SАОС + SАОВ + SВОС + SАВС
SАОС = (1/2)аН; SАОВ = (1/2)bН; SВОС = (1/2)аb;
Найдем основание и высоту боковой грани АВС с помощью теоремы Пифагора:
______ ________
ВС = √ а² +b² ; АД = √ ОД² +Н² , где ОД – проекция высоты АД на основание ВОС.
Поскольку ОД _ ВС, из подобия треугольников ВОС и ВОД имеем:______
ОД/ b = а/ВС или ОД = (аb)/ВС = (аb)/ √ а² +b²
Следовательно, _______________ ________________________
АД = √ (аb)/( а² +b²) + Н² = √[(аb)² +(bH)² + (аH)²]/( а² +b²)
_________________
В результате получаем SАВС= (1/2) √ (аb)² +(bH)² + (аH)²
_________________
Cледовательно, S полн.= (1/2) [√ (аb)² +(bH)² + (аH)² + аН + bН + аb]
2)Решение с использованием первого свойства прямоугольного тетраэдра:
S полн.= SАОС + SАОВ + SВОС + SАВС
SАОС = (1/2)аН; SАОВ = (1/2)bН; SВОС = (1/2)аb;
___________________ _________________
SАВС= √ SАОС ² + SАОВ² + SВОС ² = (1/2)√ (аb)² +(bH)² + (аH)²
_________________
Cледовательно, S полн.= (1/2)(√ (аb)² +(bH)² + (аH)² + аН + bН + аb)
Задача №280 (стр.76) учебного пособия: Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. Геометрия.-М.: Просвещение, 1994.
Ребро куба равно а. Найти площадь сечения, проходящего через диагонали двух его граней
К L
Дано: ОВДСАКLM - куб А МОА = а, ОВ = b, ОС = с – ребра
ΔАВС – сечение куба плоскостью, прохо-
дящей через диагонали смежных а
граней. В Д Найти: аSАВС О
а С
1) Решение по традиционной схеме:
Найдем стороны сечения АВС с помощью теоремы Пифагора:
______ __
АС = АВ = ВС = √ а² + а² = √2 а
Площадь правильного треугольника АВС найдем по формуле:
_ _ _
SАВС= (√3/4)(АС)2 , т.е. SАВС= (√3/4)(2а2) = (√3/2)а2
2)Решение с использованием первого свойства прямоугольного тетраэдра:
SАОС = SАОВ = SВОС = (1/2)а2 (поскольку тетраэдр равнокатетный);
___________________
SАВС= √ SАОС ² + SАОВ² + SВОС ²
_________ _
Cледовательно, SАВС= (1/2) √ а² + а² + а² = (√3/2)а2
V. Список использованной литературы:
1. М.Я.Выгодский. Справочник по элементарной математике. Изд. 6-е, Гостехиздат, М.-Л., 1952.
2. А.П.Киселев. Геометрия. Учебник для средней школы, ч.1 и 2.- М.: Учпедгиз 1951.
3. Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. Геометрия. Учебник для средней школы.-М.: Просвещение, 1994.