ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ
ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ
КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА
Курсовая работа на тему:
«Интеграл Лебега»
Выполнила: студентка 3мфА
Сенченко Ю. В.
Проверила: Панфилова Т. Л.
Вологда
2000
Содержание.
1. Введение.
1.1.Простые функции.
1.2.ИнтегралЛебега от простых функций.
2. Определение интнгралаЛебега.
3. Основные свойства интеграла.
4. Предельный переход под знаком интеграла.
5. Сравнение интегралов Римана и Лебега.
6. Примеры.
7. Литература.
1. Введение
Понятие интеграла Римана, известное из элементарного курса анализа, применимо лишь к таким функциям, которые или непрерывны или имеют «не слишком много» точек разрыва. Для измеримых функций, которые могут быть разрывны всюду, где они определены (или же вообще могут быть заданы на абстрактном множестве, так что для них понятие непрерывности просто не имеет смысла), римановская конструкция интеграла становится непригодной. Вместе с тем для таких функций имеется весьма совершенное и гибкое понятие интеграла, введенное Лебегом.
Основная идея построения интеграла Лебега состоит в том, что здесь, в отличие от интеграла Римана, точки х группируются не по признаку их близости на оси х, а по признаку близости значений функции в этих точках. Это сразу же позволяет распространить понятие интеграла на весьма широкий класс функций.
Кроме того, интеграл Лебега определяется совершенно одинаково для функций, заданных на любых пространствах с мерой, в то время как интеграл Римана вводится сначала для функций одного переменного, а затем уже с соответствующими изменениями переносится на случай нескольких переменных. Для функций же на абстрактных пространствах с мерой интеграл Римана вообще не имеет смысла.
Всюду, где не оговорено противное, будет рассматриваться некоторая полная s-аддитивная мера m, определенная на s-алгебре множеств с единицей X. Все рассматриваемые множества АÌХ будут предполагаться измеримыми, а функции f(x) - определенными для xÎ Х и измеримыми.
1.1. Простые функции.
Определение 1. Функция f(x), определенная на некотором пространстве Х с заданной на нем мерой, называется простой, если она измерима и принимает не более, чем счетное число значений.
Структура простых функций характеризуется следующей теоремой.
Теорема 1. Функция f(x), принимающая не более чем счетное число различных значений
y1, y2, … , yn, … ,
измерима в том и только том случае, если все множества
An={x : ¦(x)=yn}
измеримы.
Доказательство. Необходимость условия ясна, так как каждое An есть прообраз одноточечного множества{yn}, а всякое одноточечное множество является борелевским. Достаточность следует из того, что в условиях теоремы прообраз f-1(B) любого борелевского множества есть объединение
не более чем счетного числа измеримых множеств An, т. е. измерим.Использование простых функций в построении интеграла Лебега будет основано на следующей теореме.
Теорема 2. Для измеримости функции f(x) необходимо и достаточно, чтобы она могла быть представлена в виде предела равномерно сходящейся последовательности простых измеримых функций.
Доказательство. Для доказательства необходимости рассмотрим произвольную измеримую функцию f(x) и положим fn(х)=m/п, если т/п f(x)<(m+1)/n (здесь т - целые, а п - целые положительные). Ясно, что функции fn(x) простые; при п® они равномерно сходятся к f(x), так как çf(x)- fn(x)ç£1/n.
1.2.Интеграл Лебега для простых функций.
Мы введем понятие интеграла Лебега сначала для функций, названных выше простыми, т. е. для измеримых функций, принимающих конечное или счетное число значений.
Пусть f—некоторая простая функция, принимающая значения
y1, y2, … , yn, … ; yi yjпри i j,
и пусть А — некоторое измеримое подмножество X.
Естественно определить интеграл от функции f по множеству А равенством
= , где An={x: x A, f(x)=yn}, (1) если ряд справа сходится. Мы приходим к следующему определению (в котором по понятным причинам заранее постулируется абсолютная сходимость ряда).Определение 2. Простая функция f называется интегрируемой или суммируемой (по мере m) на множестве A, если ряд (1) абсолютно сходится. Если f интегрируема, то сумма ряда (1) называется интегралом от f по множеству А.
В этом определении предполагается, что все уn различны. Можно, однако, представить значение интеграла от простой функции в виде суммы произведений вида ckm(Bk) и не предполагая, что все ck различны. Это позволяет сделать следующая лемма.
Лемма. Пусть А= , Bi Bj=Æ при i j и пусть на каждом множестве Bk функция f принимает только одно значение ck; тогда
= , (2) причем функция f интегрируема на А в том и только том случае, когда ряд (2) абсолютно сходится.
Доказательство. Легко видеть, что каждое множество
Аn={х: хÎА, f(x)=yn}
является объединением тех Bk, для которых сk=yn. Поэтому
= = .
Так как мера неотрицательна, то
= = ,
т. е. ряды
и абсолютно сходятся или расходятся одновременно. Лемма доказана.Установим некоторые свойства интеграла Лебега от простых функций
A)
= + ,причем из существования интегралов в правой части равенства следует существование интеграла в левой.
Для доказательства предположим, что f принимает значения fi на множествах FiÌA,ag — значения gj на множествах GjÌA, так что
J1= = , (3)
J2= = . (4)
Тогда в силу леммы
J= = ; (5)
так что из абсолютной сходимости рядов (3) и (4) следует и абсолютная сходимость ряда (5); при этом
J=J1+J2.
Б) Для любого постоянного k
=k ,
причем из существования интеграла в правой части следует существование интеграла в левой части. (Проверяется непосредственно.)
В) Ограниченная на множестве А простая функция f интегрируема на А, причем, если½f(x)½£M на A, то
½
½£Mm(A).(Проверяется непосредственно.)
2. Определение интеграла Лебега
Классическое определение интеграла, данное О. Коши и развитое Б. Риманом, состоит, как известно, в следующем: рассматривается конечная функция f(x), заданная на сегменте [a, b]; этот сегмент разбивается на части точками