233. Точки А и В находятся в одной полуплоскости с границей СО. Найдите на СВ такую точку М, чтобы /. АМС — I -- /_ ВМВ == 90°.
234. Внутри угла ВАС, величина которого 45°, даны точки 1 М и N. Постройте равнобедренный треугольник, у которого
основание лежит на луче АС, вершина — на луче АВ, а боковые стороны проходят через М и N.
235. Постройте параллелограмм АВСВ по лучам ВА и ВС и центру окружности, проходящей через точки А, С, ^.
0236. Точки О), Оч, Оз симметричны центру окружности, описанной около треугольника АВС, относительно его сторон. Докажите, что А -АВС == Д 0\0ч0г.
237. По условию задачи 236 постройте по точкам 0\, Оч, Оз треугольник АВС.
Поворот около точки
238. Постройте квадрат АВСВ по положению вершины В и расстояниям от данной точки М до вершин А у. С.
239. Постройте квадрат по расстояниям трех его вершин от данной точки М.
240. Точка В находится между точками А и С. По одну сторону от АС построены равносторонние треугольники АВВ, ВСР, по другую сторону — равносторонний треугольник АСЕ. Докажите, что центры этих треугольников являются вершинами равностороннего треугольника.
241. Точка М находится внутри равностороннего треугольника АВС. Докажите, что можно построить треугольник, стороны которого соответственно равны отрезкам МА, МВ, МС.
242. На сторонах АВ и АС треугольника АВС вне треугольника построены квадраты АВВК и АСЕМ. Докажите, что отрезок КМ вдвое больше медианы треугольника, причем КМ 1- АО.
243. Постройте равносторонний треугольник, у которого середина основания — данная точка О, а боковые стороны (или их продолжения) проходят через данные точки М ц N.
244. Постройте равносторонний треугольник, у которого вершины лежат на трех данных концентрических окружностях, а центр — на данной прямой, пересекающей эти окружности.
245. Постройте квадрат, у которого три вершины лежат на трех данных концентрических окружностях, а четвертая — на данной прямой.
246. Внутри квадрата АВСВ имеется точка М, причем /- АМВ == 90°, МА — МВ == а. Найдите расстояние от точки М до центра квадрата.
247. Внутри равностороннего треугольника АВС имеется такая точка М, что /- АМВ = 120°, МА — МВ = а. Найдите расстояние от точки М до центра описанной около треугольника окружности.
248. Отрезки АВ и СВ равны. Докажите, что можно выполнить такой поворот около точки О, что АВ и СВ совместятся. Как определить центр и угол поворота?
249. Каждый угол треугольника менее 120°. Найдите точку с наименьшей возможной суммой расстояний от вершин
треугольника.
250. Сумма катетов прямоугольного треугольника равна I, На его гипотенузе вне треугольника построен квадрат. Найдите расстояние от центра квадрата до вершины прямого угла треугольника.
Параллельный перенос
251. Точки А и В находятся по одну сторону от прямой СВ. Найдите на СВ такие точки Е и Р, чтобы АЕ = ВР и длина отрезка ЕР равнялась а.
252. Постройте четырехугольник по длинам двух противолежащих сторон, длинам диагоналей и углу между диагоналями.
253. Даны лучи МА, МВ, МС. Постройте прямую, которая пересекает их в таких точках А\, В\, С\, что А\В\ == В\С\ = а.
254. Постройте трапецию по боковым сторонам и расстояниям между противоположными сторонами.
255. Постройте четырехугольник по длинам всех его сторон и разности углов при одной из сторон.
256. Постройте отрезок данной длины о, параллельно данной прямой, с концами на двух данных окружностях.
257. Постройте отрезок длины а, параллельный прямой II, концы которого лежат на прямой 1ч и на данной окружности.
258. Даны точки А, В, С, В, Е. Проведите через А такую прямую, чтобы остальные точки были от нее по одну сторона а сумма расстояний от нее до В и С была на а меньше суммы расстояний от В и Е.
259. Постройте прямую, на которой две данные окружности отсекают отрезки длиной а и I.
Равенство фигур
260. Две пересекающиеся высоты и угол между ними одног параллелограмма равны двум высотам и углу между ними другого параллелограмма. Равны ли эти параллелограммы?
261. Равны ли две трапеции, если стороны одной соответственно равны сторонам другой?
262. Докажите, что две трапеции равны, если основания и диагонали одной трапеции соответственно равны основаниям и диагоналям другой.
263. Докажите, что две трапеции равны, если основания и углы при большем основании одной трапеции равны основаниям и углам при большем основании другой.
264. Через центр квадрата проходят две взаимно перпендикулярные прямые. Докажите, что отрезки их, заключенные между сторонами квадрата, равны.
265. В окружность с центром О вписан равносторонний треугольник АВС. Через О проходят две прямые, образующие угол в 60°. Докажите, что отрезки прямых, ограниченные сторонами треугольника, равны.
266. Докажите, что параллельный перенос можно заменить двумя осевыми симметриями с параллельными осями.
267. Два треугольника равны. Сколько потребуется осевых симметрий, чтобы эти треугольники совместились?
268. Середины противоположных сторон четырехугольника АВСВ соединили отрезками, которые пересеклись в точке О. Затем построили параллелограмм ОКТМ так, что ОК = 20Н, ОМ = 20Е, и провели ВР \ ВС и ВР \ АВ (рис. 36). Докажите, что четырехугольник АВСВ и параллелограмм составлены из соответственно равных четырехугольников ах при положи
-
ДЕВЯТЫЙ КЛАСС
Гомотетия
1. Докажите, что фигуры у = х2 и у тельном а ^= 1 гомотетичны.
2. Гомотетичны ли фигуры у = ж3 и у = 4х3? Если да, укажите центр и коэффициент гомотетии.
3. Гомотетичны ли относительно начала координат прямые:
а) ах + Ьу — с = О и ах + Ьу + с = 0; б) 2-е — Зг/ — 5 == О и Зх — 2у — 5 = О?
4. Гомотетичны ли треугольник АВС и треугольник, образованный его средними линиями? Если да, укажите центр и коэффициент гомотетии.
5. Впишите в треугольник АВС треугольник, стороны которого соответственно перпендикулярны: а) сторонам треугольника АВС; б) биссектрисам углов треугольника АВС.
6. Докажите, что середины всех отрезков, которые параллельны стороне АВ треугольника АВС и имеют концы на двух других сторонах, лежат на медиане СР.
7. Вершины треугольника недоступны (то есть лежат за пределами данной части плоскости). Используя результат задачи 6, определите построением длины всех сторон треугольника (рис. 37).
8. Вершины треугольника недоступны. Постройте: а) центр описанной окружности; б) точку пересечения высот треугольника (или их продолжений).
9. Постройте прямую, параллельную стороне ВС треугольника АВС и пересекающую АВ и АС в таких точках В и Е, что АВ = ЕС.
10. Постройте равносторонний треугольник, у которого медианы пересекаются в данной точке М, а концы одной из высот лежат на двух данных окружностях.
11. Постройте окружность, которая касается данной окружности и в данной точке касается данной прямой.
12. Постройте квадрат АВСВ, зная положение вершины А. и двух прямых, одна из которых проходит через точку В, а вторая через центр квадрата.
13. Постройте две равные окружности, которые касаются одна другой и в точках A и B касаются: а)сторон данного угла; б) двух данных окружностей.
14. На обломке круга сохранился центр круга О и части хорды АВ без ее концов. Найдите построением величину угла АОВ.
15. Постройте две равные окружности, которые касаются одна другой и основания АС треугольника АВС. Кроме того, одна окружность касается боковой стороны АВ треугольника АВС, а другая — боковой стороны ВС.
16. Постройте две равные окружности, которые касаются одна другой и основания АВ треугольника АВС. Кроме того, одна из них касается продолжения стороны АВ, а другая — \ продолжения стороны ВС.
17. Даны прямые о и Ъ и точка М, не принадлежащая этим прямым. Постройте две окружности, которые пересекаются в точке М, касаются прямой а и имеют центры на прямой Ь.
18. АВ и АС — хорды данной окружности. Постройте окружность, которая касается данной окружности и сторон угла ВАС.
19. Даны две пересекающиеся прямые и окружность. Постройте окружность, которая касается этих прямых и данной окружности.
20. Постройте прямоугольный треугольник АВС по острому углу А и сумме катета ВС с проведенной к нему медианой.
21. Постройте трапецию по ее высоте и отношению длкт всех сторон АВ : ВС : СО : АВ (основания трапеции Ж и АВ}.
Подобие треугольников
22. Через внутреннюю точку М треугольника АВС постройте прямую, которая отсекает треугольник, подобный треугольнику АВС. Сколько решений имеет задача?
23. В угол вписаны три окружности, одна из которых касается двух других. Докажите, что их радиусы связаны соотношением: г| == Г) • Гз.
24. Стороны двух треугольников соответственно перпендикулярны. Подобны ли эти треугольники?
25. МАВ и МСВ — секущие к окружности. Докажите, что треугольники МАС и МВВ подобны.
26. Через точку пересечения диагоналей четырехугольника АВСВ проведена прямая, пересекающая две его стороны в точках М и N. Из этих точек опущены перпендикуляры на диагонали четырехугольника (рис. 38). Верно ли, что основания перпендикуляров являются вершинами трапеции или параллелограмма?
27. Два треугольника подобны. Разность их больших сторон 12 см, разность их меньших сторон 6 см, длины двух средних стопин 30 и 20 см. Определите периметры треугольников.
28. Периметры двух подобных прямоугольных треугольников относятся, как 1 : 8. У одного треугольника гипотенуза больше большего катета на 16 см, у другого — сумма гипотенузы с меньшим катетом имеет ту же величину. Найдите длины сторон этих треугольников.