82. Может ли площадь одной боковой грани пирамиды быть равной сумме площадей остальных боковых граней? Может ли она превысить названную сумму площадей? Подкрепите свои соображения примерами.
83. Площадь боковой поверхности правильной четырехугольной пирамиды равна сумме площадей основания и диагональных сечений. Найдите величину плоского угла при вершине пирамиды.
84. Из центра основания О правильной четырехугольной пирамиды, площадь поверхности которой О, проведены параллельно боковым ребрам пирамиды прямые ОА\, ОВ\, ОС\, ОВ\ (рис. 63). Найдите площадь поверхности пирамиды ОА1В\С\В\.
Сечение пирамиды
85. Плоский угол при вершине правильной пирамиды — прямой. Как построить сечение пирамиды плоскостью, проходящей через вершину пирамиды, чтобы оно было равносторонним треугольником?
86. Сторона основания правильной треугольной пирамиды 20 см, боковое ребро 30 см. Постройте сечение, имеющее форму квадрата, и определите его площадь.
87. Площадь малого осевого сечения правильной четырехугольной пирамиды О. Найдите площадь сечения, которое перпендикулярно стороне основания и делит эту сторону в отношении 1:5.
88. В правильной шестиугольной пирамиде сторона основания 10 см, а боковое ребро 13 см. Найдите площадь сечения, проходящего через центр основания параллельно боковой грани.
89. Сторона основания правильной четырехугольной пирамиды МАВСО равна а, боковое ребро I. Постройте сечение через середины сторон основания АВ и ВС параллельно ребру МВ и определите площадь сечения.
90. Сторона основания правильной четырехугольной пирамиды 12 см, а боковое ребро 11 см. Найдите площадь сечения, проходящего через сторону основания перпендикулярно противолежащей боковой грани.
91. Периметр основания правильной треугольной пирамиды 45 см, боковое ребро 14 см. Найдите площадь сечения, которое проходит через середину медианы основания перпендикулярно этой медиане.
92. Через сторону основания правильной четырехугольной пирамиды и среднюю линию параллельной боковой грани про-
о ведено сечение. Докажите, что его площадь больше — площади
основания.
93. Через сторону основания правильной шестиугольной пирамиды и среднюю линию параллельной боковой грани про-
ведена плоскость. Докажите, что площадь сечения больше —
площади основания.
94. Основание пирамиды МАВСВ — ромб с диагоналями АС = 24 см, ВО == 21см. Боковое ребро МА == 18 см перпендикулярно плоскости основания. Найдите площадь сечения, которое проходит через вершину А и середину ребра МС параллельно диагонали ВО основания (рис. 64)..
Параллельные сечения пирамиды
95. Построены два сечения пирамиды плоскостями, перпендикулярными боковому ребру. Относятся ли площади этих сечений как квадраты их расстояний от вершины пирамиды?
96. Площадь основания пирамиды 128 см2. Площади двух сечений, параллельных основанию, 18 и 50 см2, расстояние между плоскостями сечений 12 см. Найдите высоту пирамиды.
97. Боковое ребро и высота правильной четырехугольной пирамиды 35 и 28 см. В пирамиду вписан куб так, что его 4 вершины лежат на основании пирамиды, а 4 — на апофемах пирамиды. Найдите ребро куба.
98. Основание пирамиды — прямоугольный треугольник с катетами 3 и 4 см. Высота пирамиды Н == 24 см находится внутри пирамиды. В пирамиду вписан куб так, что 4 вершины его лежат на основании пирамиды, а 4 — на боковых гранях, причем боковые грани куба параллельны катетам основания (рис. 65). Найдите ребро куба.
Усеченная пирамида
99. Докажите, что диагонали правильной четырехугольной усеченной пирамиды пересекаются в одной точке.
100. Площади оснований усеченной пирамиды 75 и 147 см2. Найдите площадь сечения, проходящего через середины всех боковых ребер.
101. Диагональ правильной четырехугольной усеченной пирамиды имеет длину 15 см и делит отрезок, соединяющий центры оснований, на части в 4 и 5 см. Найдите площади оснований усечённой пирамиды.
102. Отрезок 00\ = 27 см, соединяющий центры оснований правильной четырехугольной усеченной пирамиды, разделил ее диагональ на части в 20 и 25 см. Найдите площади оснований.
103. Сторона меньшего основания, боковое ребро и сторона большего основания правильной четырехугольной усеченной пирамиды составляют арифметическую прогрессию с разностью 4 см. Высота усеченной пирамиды 7 см. Найдите площади оснований.
104. В правильной шестиугольной усеченной пирамиде отрезок, соединяющий середину малой диагонали большего основания с центром другого основания, параллелен одному из боковых ребер. Как относятся площади оснований усеченной пирамиды?
105. В правильной треугольной усеченной пирамиде стороны оснований 2 и 5 дм, высота 1 дм. Найдите площадь сечения, проходящего через сторону меньшего основания параллельно боковому ребру.
106. Стороны оснований правильной треугольной усеченной пирамиды относятся, как 1 : 3. Периметр боковой грани равен
периметру одного из оснований. Найдите угол между боковым ребром и плоскостью основания.
107. Центр каждого основания правильной треугольной усеченной пирамиды соединен с вершинами другого основания (рис. 66). Найдите длину линии, которая соединяет попарно точки пересечения построенных отрезков, если периметры оснований усеченной пирамиды равны Р и Р\.
Площадь поверхности усеченной пирамиды
108. Стороны основания правильней шестиугольной усеченной пирамиды 5 и 11 см. Расстояние между параллельными сторонами оснований, не лежащими в одной грани, 19 см. Найдите площадь поверхности усеченной пирамиды.
109. Сечение, проходящее через середины всех боковых ребер правильной пирамиды, разделило ее на части, площади полных поверхностей которых относятся, как 3 : 11. Определите двугранный угол при основании пирамиды.
110. Периметры оснований правильной треугольной усеченной пирамиды 18 и 36 см. Расстояние от вершины меньшего основания до противолежащей стороны другого основания 7 см. Найдите площадь боковой поверхности усеченной пирамиды.
111. Периметры оснований правильной шестиугольной усеченной пирамиды АВСВЕРА\В1С\В\Ё\Р\ 28 и 124 см. Расстояние от вершины А \ меньшего основания до прямой СЕ равно 17 см. Найдите площадь боковой поверхности усеченной пирамиды.
112. Основания усеченной пирамиды — ромбы с отношением сторон 3 : 4 и длинами сторон 15 и 25 см. Одно из боковых ребер перпендикулярно плоскости основания и равно меньшей диагонали меньшего основания. Найдите площадь поверхности усеченной пирамиды.
Правильные многогранники
113. Докажите, что тетраэдр с вершинами в центрах масс граней правильного тетраэдра — правильный. Как относятся площади поверхностей этих тетраэдров?
114. В каком отношении делятся при пересечении высоты правильного тетраэдра?
115. Для каких п можно построить сечение октаэдра плоскостью, являющееся правильным ге-угольииком?
116. Докажите, что градусные меры двугранного угла правильного тетраэдра и угла между смежными гранями октаэдра в сумме составляют 180°.
117. Точка О — середина высоты МО правильного тетраэдра МАВС. Докажите, что лучи ОА, 0В, ОС попарно взаимно перпендикулярны.
Движения
118. Сколько центров симметрии имеют две параллельные плоскости? Какую фигуру образуют все эти центры?
119. Постройте фигуру, симметричную данной треугольной пирамиде относительно центра масс ее: а) основания; б) данной боковой грани.
120. Постройте фигуру, симметричную дайной правильной га-угольной пирамиде (п == 4; 6; 3) относительно середины: высоты пирамиды.
121. АВСВА\В\С\В\ — параллелепипед, точка М 6 ал. Постройте отрезок МN, у которого середина находится на плоскости СС\А, а точка N лежит на ребре СВ.
122. Постройте отрезок с концами на ребрах АВ и МС и серединой на высоте МО правильной пирамиды МАВС.
123. Докажите, что любую четырехугольную пирамиду можно пересечь плоскостью так, чтобы сечение имело центр симметрия.
124. Напишите уравнение плоскости, которая симметрична плоскости х + у -\- г — 3=0 относительно точки М (2; 2; 2).
125. Дан квадрат АВСВ с вершинами А (4; 0; 0) и В (8; 3; 0), плоскость которого параллельна осж Ог. Найдите координаты вершин квадрата, который симметричен данному относительно точки (2; 2; 2).
126. МАВСВ — правильная пирамида. Постройте фигуру, симметричную относительно плоскости основания: а) средней линии боковой грани (два случая); б) отрезку, соединяющему центры масс граней МАВ и МВС; в) грани МАО.
127. АВСА\В\С\ — правильная приема. Постройте фигуру, симметричную относительно плоскости АВВ\: а) отрезку В^', б) данному отрезку с концами на ЕС и А\С\.
13В. Все ребра пирамиды МАВСВ равны. Найдите на плоскости ее основания точку, равноудаленную от точек Р и У, лежащих на МА и МС.
129. Точки В и Е находятся на боковых гранях правильной пирамиды МАВС. Найдите на плоскости АВС точку с наименьшей возможной суммой расстояний от В и Е.
130. Точки В и Е находятся на высоте треугольной пирамиды МАВС. Постройте на поверхности пирамиды все точки, равноудаленные от точек В и Е.
131. Точки В та Е находятся на стороне основания правильной пирамиды МАВС. Найдите на поверхности пирамиды все точки, равноудаленные от В и Е.
132. На гранях АВВ\А\ и ВСС\В{ правильной треугольной приемы АВСА\В\С\ даны точки В и Е. Постройте равнобедренный треугольник, у которого вершина находится на ВВг, концы основания — на АВ и ВС, а боковые стороны проходят через В и Е.
133. Точки В и Е находятся на гранях МАВ и МВС правильной пирамиды МЛ.ВС. Постройте равнобедренный треугольник с вершиной на МВ, концами основания на АВ и ВС, чтобы боковые стороны содержали В у. Е.