Смекни!
smekni.com

Задачи Лоповок (стр. 14 из 19)

160. Прямая I параллельна плоскости 6. Найдите на этой плоскости все такие точки М, что прямая, проходящая через М, пересекает б и образует равные углы с I и с плоскостью 6.

161. Прямая проходит черве вершину прямого угла и обра­зует с его сторонами углы в 45° и 60°. Какой угол она образует с плоскостью прямого угла?

162. Через сторону АВ равностороннего треугольника АВС проходит плоскость, образующая с прямой АС угол в 30°. Найдите углы между этой плоскостью и высотами тре­угольника.

168. На плоскости ху дана окружность {х — 4)2 -|-+ (у — З)2 = 25. Точка А имеет координаты (0; 0; 5). Найдите на окружности такую точку В, чтобы угол между АВ и ху был наименьшим возможным.

164. АВСВ — квадрат, точка М находится вне его плоскости. Прямые ВС т АС образуют с плоскостью АВМ углы, градусные меры которых разнятся на и. Определите величины этих углов.

166. Из точки М, находящейся вне плоскости 6, проведены к »той плоскости наклонные МА == 23 см и МВ === 9 см. Зная, что углы между наклонными и плоскостью б относятся, как 1 : 3, определите расстояние от точки М до плоскости б.

1@6. Из точки М, удаленной от плоскости 6 на 24 см, по­строены две наклонные, длины которых относятся, как 5 : 8. Углы между наклонными и плоскостью относятся, как 1 : 2. Найдите длины наклонных.

167. Из точки М ^ б проведены к плоскости наклонные МА и МВ, проекции которых на плоскость 11 и 37 см. Зная, что углы между наклонными « плоскостью относятся, как 3:1, найдите расстояние от М до 6.

168. МА и МВ - наклонные, образующие с плоскостью 5, содержащей точки А и В, углы, один из которых в 4 раза больше другого. Зная, что проекции наклонных на эту пло­скость 600 и 119 см, найдите расстояние от точки М до пло­скости &

189. Из точки М к плоскости 8 проведены наклонные МА и МВ дджнон 79' и 25 ем. Углы между наклонными и плоскостью отяовявтся, как 1 : 5. Найдите расстояние от точки М до пло­скости 6.

17<^. В точке О к плоскости 6 восстановлен перпендикуляр. На иеж отаютенм точки А, В, С так, что АО — ВО == 144 см, АО — СО == 26 см. Зная, что углы между наклонными МА, МВ, МС и плоскостью относятся, как 1:4:3, найдите МО.

Угол между плоскостями

171. Какую фигуру образуют все точки, у каждой из ко­торых сумма расстояний от двух данных пересекающихся плоскостей равна та?

172. Какую фигуру образуют все точки, у каждой из ко­торых разность расстояний от двух данных пересекающихся плоскостей равна т?

173. Какую фигуру образуют все точки, у каждой из кото­рых расстояния от пересекающихся плоскостей а и |3 относятся, как т : га?

174. АВСТ) — квадрат, треугольники МАВ и МВС — равносторонние. Найдите угол между плоскостями треуголь­ников.

175. Длины сторон трапеции 19, 19, 19, 45см. Плоскость проходит через основание трапеции под углом в 30° к пло­скости трапеции. Найдите расстояние от этой плоскости до дру­гого основания трапеции.

176. АВСВ — квадрат. Точка М удалена от каждой стороны квадрата на АВ. Найдите угол между плоскостью квадрата и плоскостью МВС.

177. Точка М удалена от каждой стороны равностороннего треугольника АВС на радиус окружности, описанной около треугольника. Найдите угол между плоскостями АВС и МАВ.

178. Точка М находится внутри двугранного угла а и удале­на от его граней на а и Ь. Найдите ее расстояние от ребра дву­гранного угла, если а, а, Ь соответственно равны: а) 120°, 22см, 23см; 6)60°, 2см, 11см; в) 30°, 2см, 3 уз см;

г) 150°,^11 см; 8 уз см; д) 45°, ,10см, 7-^2 см; е) 135°, 8 см, 7у2 см.

179. Точка М находится внутри двугранного угла в 45° и удалена от его ребра на 10 см. Найдите ее расстояния от граней двугранного угла, зная, что эти расстояния относятся, как 1 : 3 У2.

180. Сторона равностороннего треугольника 6 см. Найдите расстояние от точки М до плоскости АВС, если плоскости МАВ, МАС, МВС образуют с ней углы: а) 90°, 30°, 60°; б) 60°, 60°, 30°.

Площадь ортогональной проекции

181. Плоскости а и р пересекаются. Треугольник АВС находится на плоскости а, его ортогональная проекция на плоскость р — Д А&bsol;В&bsol;С&bsol;. Ортогональная проекция на плоскость а треугольника А[В[С1 — Д А уВъС-г. Найдите угол между пло­скостями а и р, если площадь треугольника АчВ'гСч меньше площади треугольника АВС: а) вдвое; б) на 25 %.

182. Стороны треугольника АВС 25, 29, 36 см, его ортого­нальная проекция на плоскость 6 — А А&bsol;В&bsol;С&bsol;. Ортогональная проекция треугольника а&bsol;в}с&bsol;на плоскость АВС— ^А^В^Сч,

стороны которого 12, 17, 25см. Найдите угол между плоско­стями АВС и 6.

183. Докажите, что при параллельном проектировании двух многоугольников, лежащих в одной плоскости, на одну и ту же плоскость площади проекций относятся, как площади многоугольников.

184. На плоскости 6 находятся квадрат и треугольник. Периметр квадрата 32 см, стороны треугольника 13, 37, 40 см. Проекция квадрата на плоскость б — прямоугольник со сто­ронами 5 и 8 см. Определите площадь проекции треугольника на плоскость 6.

185. Проекция квадрата АВСВ на плоскость 6 — прямо­угольник АВЕР, причем ортогональная проекция точки Р делит отрезок АВ в отношении 1 : 3, считая от А. Найдите угол между плоскостями квадрата и прямоугольника.

186. Ортогональная проекция квадрата на плоскость — четырехугольник со сторонами 2 и 4 см и диагональю 5 см. Определите площадь квадрата и угол между плоскостью квад­рата и плоскостью проекции.

Уравнение плоскости

187. Напишите уравнение плоскости, которая проходит че­рез точку М(1; 3; 8) и отсекает на координатных осях равные отрезки.

188. Напишите уравнение плоскости, которая пересекает оси Ох, Оу, Ог в таких точках А, В, С, что АВ = 10, АС ==. 17, ВС == 3 У29.

189. Напишите уравнение плоскости, которая проходит че­рез точки (0; 2; 5), (1; 0; 3), (1; 4; 0).

| 190. Напишите уравнение плоскости, которая пересекает две координатные плоскости по прямым Зх — 2г — 6 == О и Зу + 5г -^- 15 == 0.

191. Напишите уравнение плоскости, которая параллельна оси Ог и проходит через точки А(1; 5; 3) и 5(4; 2; 1).

192. Найдите угол между плоскостями ху и —+ ^—+

_1_ г _ 1 + 12-- 1- ^

ОДИННАДЦАТЫЙ КЛАСС

Многогранник

1. На сколько частей делят пространство плоскости всех граней: а) треугольной призмы; б) куба; в) треугольной пира­миды?

2. Изобразите многогранник с общим числом ребер: а) 11;

б) 13.

3. Докажите, что никакой многогранник не имеет ровно 7 ребер.

4. Изобразите многогранник, отличный от пирамиды, у ко­торого вершин столько же, сколько граней.

5. Даны 5 точек, никакие 4 из которых не лежат в одной плоскости. Определяют ли данные точки единственный много­гранник с вершинами в этих точках?

6. Может ли существовать многогранник с нечетным числом граней, причем все его грани — четырехугольники?

Призма

7. Иногда призму определяют как многогранник, у которого две грани — многоугольники, лежащие в параллельных пло­скостях, а все остальные грани — параллелограммы. Приведите примеры, свидетельствующие о неточности такого определения.

8. Изобразите призму, у которой вершин столько же, сколь­ко диагоналей.

9. Может ли неправильная призма иметь 4 плоскости сим­метрии? Если да, изобразите призму, отвечающую этому ус­ловию.

10. Ребро куба 2 см. Паук находится в центра грани куба. Какой наименьший путь по поверхности куба придется проделать пауку, чтобы попасть х вершину параллельной грани? __

11. АВСРЕРА&bsol;В&bsol;С1Р&bsol;ЕлР&bsol; — призма. Докажите, что АВ&bsol; + + ВС) + СД == А?1 + РЁ1 + ЯА.

12. Диагональ боковой грани правильной й®стиугольной призмы образует с плоскостью основания угол, который на 15° больше угла между малой диагональю призмы и пло­скостью основания. Найдите эти углы.

18. А и В — середины двух несмежных боковых ребер правильной шестиугольной призмы. Найдите на плоскости нижнего основания призмы вое такие точки, что прямые МА и МВ образуют равные углы с плоскостью нижнего основания приемы.

14. Верно ли, что площадь боковой грани треуголь­ной призмы меньше суммы площадей остальных боковых граней?

15. Две боковые грани треугольной призмы взаимно перпен­дикулярны. Докажите, что сумма квадратов площадей этих граней равна квадрату площади третьей боковой грани.

16. Три диагонали четырехугольной приемы имеют общую точку О. Докажите, что и четвертая диагональ приемы про­ходит через точку О.

17. Стороны основания прямой треугольной призмы от­носятся, как 5 : 9 : 10. Диагонали двух меньших боковых гра­ней 26 и 30 см. Найдите площадь третьей боковой грани.

18. Пьедестал имеет форму правильной призмы. Проходя мимо него, можно видеть то 3, то 4 боковые грани. Определите число боковых граней пьедестала.

19. Основание призмы — прямоугольный треугольник АВС, две боковые грани (АВВ&bsol;А&bsol; и АСС&bsol;А&bsol;) — квадраты. Найдите ^ В^АСх.

20. Найдите точку с наименьшей суммой квадратов рас­стояний от всех вершин данной правильной треугольной призмы.

Площадь поверхности призмы

21. Докажите, что площадь боковой грани любой призмы менее половины площади боковой поверхности призмы.

22. Диагональ боковой грани правильной шестиугольной призмы равна большой диагонали основания. Найдите отноше­ние площадей боковой и полной поверхности призмы.

23. Расстояния боковых ребер треугольной призмы от па­раллельных боковых граней равны 12, 15, 20см; меньшая боковая грань имеет форму квадрата и перпендикулярна плоскости основания. Найдите площадь поверхности призмы.

24. Площадь основания и площади боковых граней прямой треугольной призмы соответственно равны 480, 312, 200, 128 см2. Найдите высоту призмы.

25. Основаш1е прямой призмы — ромб. Зная, что ее высота и диагонали 40, 41, 50 ем, найдите площадь боковой поверхно­сти призмы.