Смекни!
smekni.com

Задача остовных деревьев в k–связном графе (стр. 2 из 10)

Сформулированное выше определение графа, вместе с соответствующим изображением, достаточно для многих задач. Однако для некоторых целей желательно понятие графа несколько расширить.

Во–первых, можно получить ребра, у которых обе концевые точки совпадают:

L=(a, a). (1.4)

Такое ребро (1.4) будет называться петлей. При изображении графа петля будет представляться замкнутой дугой, возвращающейся в вершину а и не проходящей через другие вершины (рис 1.5). Петля обычно считается неориентированной. Можно расширить полный граф U в (1.3) до полного графа с петлями U0, добавляя

петлю в каждой вершине, так что ребрами U0 являются все пары (1.2), где допускается и a=b.

Во–вторых, можно расширить понятие графа, допуская, чтобы пара вершин соединялась несколькими различными ребрами

Ei=(a, b)i, (1.5)

как это изображено на рис. 1.6. Для ориентированного графа две вершины a и b могут соединяться несколькими ребрами в каждом из направлений:

Ei=(a, b)i,

=(a, b)j,

(рис. 1.7).

Чтобы проиллюстрировать случай, для которого эти понятия оказываются естественными, рассмотрим какое–либо командное соревнование, например турнирную таблицу лиги бейсбола. Вершинами соответствующего графа

являются команды. Пара команд А и В связывается ребром каждый раз, когда они сыграли. Если А выиграла у В, то это ребро будем ориентировать от А к В. а если В выиграла у А, то противоположном направлении; в случае ничьей ребро будет неориентированным.

Для каждого графа G существует обратный граф G*, получаемый изменением ориентации каждого из ребер G на противоположную. Для

каждого ориентированного графа существует также соотнесенный неориентированный граф Gu, ребрами которого являются ребра G, но уже без ориентаций. Иногда удобно превратить неориентированный граф G в ориентированный граф Gdпри помощи процесса удвоения, состоящего в замене каждого ребра G парой с теми же концами и приписывании им противоположных ориентаций.

Граф называется плоским, если он может быть изображен на плоскости так что все пересечения ребер являются вершинами G. Граф на рис 1.8а плоский, а на рис 1.8б неплоский.

§2. Матрицы смежности и инцидентности.

В §1 мы определили ребро Е (1.2) графа G (1.1) как элемент или точку (a, b) в произведении V´V. Как обычно, элементы этого произведения можно представить в виде клеток квадратной таблицы М с элементами множества V в качестве координат по двум осям (рис 2.1).

В точку с координатами (a, b) поместим числа 1 или 0 в зависимости от того, существует или не существует в G соответствующее ребро. Таким образом, мы получили конечную или бесконечную матрицу смежности (вершин) М(G), которая полностью описывает G, если имеет однократные ребра. Обычно обозначения выбираются так, чтобы элементы (а, а), соответствующие петлям, располагались на главной диагонали матрицы М. Если G–неориентированный граф, то ребра (a, b) и (b, a) существуют одновременно, таким образом, неориентированным графам соответствуют симметрические матрицы смежности.

Если G имеет кратные ребра, то числа 0 и 1 в клетках (a, b) можно заменить кратностями r(a, b) ребер, соединяющих а и b. Это дает описание графа G матрицей с целыми неориентированными элементами. Обратно, любая такая матрица может быть интерпретирована как граф, так что любые результаты для графов могут быть сформулированы как свойства таких матриц.

Сказанное приводит к дальнейшему расширению понятия графа, использующему уже все конечные или бесконечные матрицы, элементами которых являются вещественные неотрицательные числа. Такие матрицы встречаются в различных областях математики. Например, стохастические матрицы – в теории вероятностей и в теоретической физике. Где рассматриваемая система имеет некоторое множество V возможных состояний, и любая пара состояний (a , b) связывается некоторой вероятностью перехода r(a, b). Другим примером является граф, представляющий схему дорог, в котором r(a, b) означает соответствующее расстояние между а и b.

Графы могут быть также описаны матрицами другого вида. Всякий граф состоит из объектов двух типов–вершин и ребер. Можно построить матицу M1(G), строки которой соответствуют вершинам, а столбцы–ребрам. На месте (а, Е) в этой матрице поместим значение

e=1, если а–начальная вершина ребра Е, значение e=-1, если а–конечная вершина, и e=0, если а не инцидентно Е. Если G–неориентированный граф, то можно использовать только значения e=1 и e=0. Эта матрица M1(G) называется матрицей инцидентности графа G.

Введем, наконец, матрицу смежности ребер I(G), в которой и строки и столбцы отвечают ребрам G. Для простоты предположим. Что G не имеет петель, а ребра неориентированные и однократные. На месте (E, E) в I(G) поместим e=1, если Е и Е’–различные ребра с общим концом, и e=0, если Е=Е’ или если они не имеют общего конца. Таким образом, I(G)–квадратная матрица, определяемая графом G.

Можно встать и на другую точку зрения и рассматривать I(G) как матрицу смежности вершин для нового графа, также обозначаемого через I(G), вершинами которого являются ребра Е графа G, а ребрами–пары (E, E’) с e=1. Назовем I(G)графом смежности ребер или смежности графом для G. Существование такого графа, в котором бывшие ребра становятся вершинами и наоборот, объясняет двойственность между вершинами и ребрами, встречающуюся в некоторых вопросах теории графов.

Фактическое построение смежности графа I(G) по чертежу графа G просто. На каждом ребре Е выбираем фиксированную точку еЕ, например середину Е. Пару таких вершин (е, е’) соединяем новым ребром, принадлежащим I(G), тогда и только тогда, когда соответствующие ребра Е и Е’ имеют общую вершину в G.

Рис. 2.2 дает это построение для графа тетраэдра; смежностным графом для него является граф октаэдра.

Предположим, то в вершине е сходится r(е) ребер Е=(е, е’) из G. Тогда в I(G) середина eE ребра Е соединяется ребрами с r(е)–1 серединами остальных ребер из G, имеющих конец в е. Таким образом, вI(G) эти новые ребра образуют новый граф U(e) сr(е) вершинами. В I(G) вершина eE соединяется ребрами также с r(е’)–1 серединами остальных ребер из G, из имеющих конец в e’, и эти новые ребра образуют другой полный граф U(e’). Два графа U(e) и U(e’) имеют ровно одну общую вершину, именно вершину eE, определяемую единственным ребром Е, соединяющим e и e. Таким образом, I(G) имеет такое непересекающееся по ребрам разложение

I(G)=

2.1

На полные графы U(e) с r(е) вершинами, что U(e) имеет единственную общую вершину с каждым из r(е) других полных графов U(e’). Исключение составляет случай, когда (e, e’)–единственное ребро в e, т.е.r(е’)=1. Тогда не существует графа. U(e’).

Предположим, что, наоборот, для графа G1 существует такое разложение (2.1) на полные графы, что пара (U(e), U(e’)) имеет не более одной общей вершины. Тогда G1 можно рассматривать как смежностный граф G1=I(G) некоторого графа G, считая, что каждое U(e) имеет r1

r(е) общих вершин с другими U(e’). Каждому U(e) поставим в соответствие одну вершину e и соединим e и e ребром в G тогда и только тогда, когда U(e) и U(e’) имеют общую вершину. К этим ребрам добавим r(е)– r1 ребер (e, e’’), идущих к новым вершинам e’’, в которых существует только одно это ребро.

§3 Деревья