Смекни!
smekni.com

Двойственный симплекс-метод и доказательство теоремы двойственности (стр. 1 из 4)

ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ

РОССИЙСКОЙ ФЕДЕРАЦИИ

Кафедра математики

КУРСОВАЯ

на тему:

Двойственный симплекс-метод и доказательство теоремы двойственности.

Студент группы МЭК 1-1 - А.С. Кормаков

Научный руководитель - Солодовников А.С.

МОСКВА – 2001

Содержание

1. Двойственность в линейном программировании.................................... 3

2. Несимметричные двойственные задачи. Теорема двойственности... 4

3. Симметричные двойственные задачи........................................................ 9

4. Виды математических моделей двойственных задач........................... 11

5. Двойственный симплексный метод........................................................... 12

6. Список используемой литературы............................................................ 14

1. Двойственность в линейном программировании

Понятие двойственности. С каждой задачей линейного программирования тесно связана другая линейная задача, называемая двойственной. Первоначальная задача называется исходной.

Связь исходной и двойственной задач состоит в том, что коэффици­енты Cjфункции цели исходной задачи являются свободными членами системы ограничений двойственной задачи, свободные члены Bi систе­мы ограничений исходной задачи служаткоэффициентами функции цели двойственной задачи, а матрица коэффициентов системы ограни­чений двойственной задачи является транспонированной матрицей коэффициентов системы ограничений исходной задачи. Решение двой­ственной задачи может быть получено из решения исходной и наоборот.

В качестве примера рассмотрим задачу использования ресурсов. Предприятие имеет т видов ресурсов в количестве bi (i = 1, 2, ..., m) единиц, из которых производится n видов продукций. Для производ­ства 1 ед. i-й продукции расходуется aij ед. t-гo ресурса, а ее стоимость составляет Cj ед. Составить план выпуска продукции, обеспечивающий ее максимальный выпуск в стоимостном выражении. Обозначим через xj(j =1,2, ..., n) количество ед. j-й продукций, Тогда исходную задачу сформулируем так.

Найти вектор Х =(x1, x2, …, xn), который удовлетворяет ограни­чениям

a11x1 + a12x2 + … + a1nxn £ b1,

a21x1 + a22x2 + … + a2nxn £ b2, xj³ 0 (j =1,2, ..., n)

…………………………………

am1x1 + am2x2 + … + amnxn £ bm,

и доставляет максимальное значение линейной функции

Z = C1x1 + C2x2 + … + Cnxn,

Оценим ресурсы, необходимые для изготовления продукции. За единицу стоимости ресурсов примем единицу стоимости выпускаемой продукции. Обозначим через уi(j =1,2, ..., m) стоимость единицы i-горесурса. Тогда стоимость всех затраченных ресурсов, идущих на изготовление единицы j-й продукции, равна

. Стоимость затрачен­ных ресурсов не может быть меньше стоимости окончательного продукта, поэтому должно выполняться неравенство
³Cj, j =1,2, ..., n. Стоимость всех имеющихся ресурсов выразится величиной
. Итак, двойственную задачу можно сформулировать следующим образом.

Найти вектор Y =(y1, y2, …, yn), который удовлетворяет ограни­чениям

a11y1 + a12y2 + … + am1ym £ C1,

a12y1 + a22y2 + … + am2ym £ C2, yj³ 0 (i =1,2, ..., m)

…………………………………

a1ny1 + a2ny2 + … + amnym £ Cm,

и доставляет минимальное значение линейной функции

f= b1y1 + b2y2 + … + bmym.

Рассмотренные исходная и двойственная задачи могут быть эко­номически интерпретированы следующим образом.

Исходная задача. Сколько и. какой продукции xj(j =1,2, ..., n)необходимо произвести, чтобы при заданных стоимостях Cj(j =1,2, ..., n)единицы продукции и размерах имеющихся ресурсов bi(i =1,2, ..., n)максимизировать выпуск продукции в стоимостном выражении.

Двойственная задача. Какова должна быть цена еди­ницы каждого из ресурсов, чтобы при заданных количествах ресурсов bi и величинах стоимости единицы продукции Ciминимизироватьобщую стоимость затрат?

Переменные уi называются оценками или учетными, неявными ценами.

Многие задачи линейного программирования первоначально ста­вятся в виде исходных или двойственных задач, поэтому имеет смысл говорить о паре двойственных задач линейного программирования.

2. Несимметричные двойственные задачи. Теорема двойственности.

В несимметричных двойственных задачах система ограничений исходной задачи задается в виде равенств, а двойственной — в виде нера­венств, причем в последней переменные могутбыть и отрицательными.Для простоты доказательств постановку задачи условимсязаписывать в матричной форме.

Исходная задача. Найти матрицу-столбец X = (x1, x2, …, xn), которая удовлетворяет ограничениям

(1.1) AX = A0, Х³0

и минимизирует линейную функцию Z = СХ.

Двойственная задача. Найти матрицу-строку Y = (y1, y2, …, ym), которая удовлетворяет ограничениям

(1.2) YA £ С

и максимизирует линейную функцию f = YA0

В обеих задачах C = (c1, c2, …, cn) - матрица-строка, A0 = (b1, b2, …, bm) — матрица-столбец, А = (aij) — матрица коэффициентов системы ограничений. Связь между оптимальными планами пары двой­ственных задач устанавливает следующая теорема.

Теорема (теорема двойственности).Если из пары двойствен­ных задач одна обладает оптимальным планом, то и другая имеет ре­шение, причем для экстремальных значений линейных функций выпол­няется соотношение

min Z = max f.

Если линейная функция одной из задач не ограничена, то другая не имеет решения.

Д о к а з а т е л ь с т в о. Предположим, что исходная задача об­ладает оптимальным планом, который получен симплексным методом. Не нарушая общности, можно считать, что окончательный базис со­стоит из т первых векторов A1, A2, ..., Am. Тогда последняя симплекс­ная таблица имеет вид табл. 1.1.

Т а б л и ц а 1.1

i Базис С базиса A0 C1 C2 Cm Cm+1 cn
A1 A2 Am Am+1 An

1

2

.

.

.

m

A1

A2

.

.

.

Am

C1

C2

.

.

.

Cm

x1

x2

.

.

.

xm

1

0

.

.

.

0

0

1

.

.

.

0

...

...

.

.

.

.

0

0

.

.

.

1

x1, m+1

x2, m+1

.

.

.

xm, m+1

.

.

.

x1n

x2n

.

.

.

xmn

m+1 Zi - Cj Z0 Z1 – C1 Z2 – C2 ... Zm – Cm Zm+1 – Cm+1 Zn – Cn

Пусть D — матрица, составленная из компонент векторов оконча­тельного базиса A1, A2, ..., Am; тогда табл. 1.1 состоит из коэффици­ентов разложения векторов A1, A2, ..., An исходной системы по векто­рам базиса, т. е. каждому вектору Aj в этой таблице соответствует та­кой вектор Xj что

(1.3) Aj= DXj (j= 1,2, ,.., n).

Для оптимального плана получаем

(1.4) A0 =DX*,

где X* = (x*1, x*2, …, x*m).

Обозначим через

матрицу, составленную из коэффициентов раз­ложения векторов Аj (j = 1, 2, ..., n), записанных в табл. 1.1. Тогда, учитывая соотношения (1.3) и (1.4), получаем:

(1.5) A=D

, D-1A =
,

(1.6) A0=DX*; D-1A0 = X*,