Смекни!
smekni.com

Двойственный симплекс-метод и доказательство теоремы двойственности (стр. 2 из 4)

(1.7) min Z= C*X*,

(1.8)

=C*
—C£0,

где С* = (C*1, C*2, …, C*m),С = (C1, C2, …, Cm, Cm+1, …, Cn), a

= (C*X1– C1; С*Х2 - С2, ..., C*Xn – Cn) = (Z1 –С1; Z2 - C2; ..., Zn — Cn) — вектор, компоненты которого неположительны, так как они совпадают с ZjCj£ 0, соответствующими оптимальному плану.

Оптимальный план исходной задачи имеет вид X*=D-1А0, поэтому оптимальный план двойственной задачи ищем в виде

(1.9) Y*=C*D-1.

Покажем, что Y* действительно план двойственной задачи. Для этого ограничения (1.2) запишем в виде неравенства YA— С £ 0, в левую часть которого подставим Y*. Тогда на основании (1.9), (1.5) и (1.8) получим

Y* АС=С* D-1АС=С*

- С£0,

откуда находим Y*A £ С.

Так как Y* удовлетворяет ограничениям (1.2), то это и есть план двойственной задачи. При этом плане значение линейной функции двой­ственной задачи f(Y*) = Y*A0. Учитывая соотношения (1.9), (1.6) и (1.7), имеем

(1.10) f(Y*) = Y*A0 = C*D-1A0=C*X*=minZ(X).

Таким образом, значение линейной функции двойственной задачи от Y* численно равно минимальному значению линейной функции исходной задачи.

Докажем теперь, что Y* является оптимальным планом. Умножим (1.1) на любой план Y двойственной задачи, а (1.2) — на любой план X исходной задачи: YAX=YA0=f (Y), YAX£СХ = Z (X), отсюда следует, что для любых планов Х и Y выполняется неравенство

(1.11) f (Y)£Z (X).

Этим же соотношением связаны и экстремальные значения max f (Y)£min Z (Х).Из последнего неравенства заключаем, что максималь­ное значение линейной функции достигается только в случае, еслиmax f (Y) = min Z (X), но это значение [см. (1.10)]f (Y)достигает при плане Y*, следовательно, план Y* — оптимальный план двойственнойзадачи.

Аналогично можно доказать, что если двойственная задача имеет решение, то исходная также обладает решением и имеет место соотно­шение max f (Y) = min Z (X).

Для доказательства второй части теоремы допустим, что линейная функция исходной задачи не ограничена снизу. Тогда из (1.11) следу­ет, что f (Y) £ -¥ . Это выражение лишено смысла, следовательно, двойственная задача не имеет решений.

Аналогично предположим, что линейная функция двойственной за­дачи не ограничена сверху. Тогда из (1.11) получаем, что Z (X)³ +¥. Это выражение также лишено смысла, поэтому исходная задача не име­ет решений.

Доказанная теорема позволяет при решении одной из двойственных задач находить оптимальный план другой.

Исходная задача. Найти минимальное значение линейной функ­ции Z = x2 – x4 – 3x5при ограничениях

x1 + 2x2 - x4 + x5 = 1,

- 4x2 + x3 + 2x4 – x5 = 2, xij³ 0 (j = 1, 2, …, 6)

3x2 + x5 + x6 = 5,

Здесь матрица-строка С = (0;. 1; 0; —1; — 3, 0), матрица-столбец

1 1 2 0 -1 1 0

A0 = 2 A = 0 -4 1 2 -1 0

3 0 3 0 0 1 1

1 0 0

2 -4 3

A’’ = 0 1 0

-1 2 0

1 -1 0

0 0 1

Двойственная задача. Найти максимальное значение линейной функции f = y1 + 2y2 +5y3 при ограничениях

y1£ 0,

2y1 – 4y2 + 3y3£ 1,

y2£ 0,

-y1 + 2y2£ -1,

y1 – y2 + y3£ -3,

y3£ 0.

Решение исходной задачи находим симплексным методом (табл. 1.2).

i Базис С базиса A0 0 1 0 -1 -3 0
A1 A2 A3 A4 A5 A6

1

2

3

A1

A3

A6

0

0

0

1

2

5

1

0

0

2

-4

3

0

1

0

-1

2

0

1

-1

1

0

0

1

m + 1 Zi - Cj 0 0 -1 0 1 3 0

1

2

3

A5

A3

A6

-3

0

0

1

3

4

1

1

-1

2

-2

1

0

1

0

-1

1

1

1

0

0

0

0

1

m + 1 Zi - Cj -3 -3 -7 0 4 0 0

1

2

3

A5

A4

A6

-3

-1

0

4

3

1

2

1

-2

0

-2

3

1

1

-1

0

1

0

1

0

0

0

0

1

m + 1 Zi - Cj -15 -7 1 -4 0 0 0

1

2

3

A5

A4

A2

-3

-1

1

4

11/3

1/3

3

-1/3

-2/3

0

0

1

1

1/3

-1/3

0

1

0

1

0

0

0

2/3

1/3

m + 1 Zi - Cj -46/3 -19/3 0 -11/3 0 0 -1/3

Оптимальный план исходной задачи X* =(0; 1/3; 0; 11/3; 4; 0), при котором Zmin = - 46/3, получен в четвертой итерации табл. 1.2. Используя эту итерацию, найдем оптимальный план двойственнойзадачи. Согласно теореме двойственности оптимальный план двойствен­ной задачи находится из соотношения Y* = C*D-1, где матрица D-1 - матрица, обратная матрице, составленной из компонент векторов, вхо­дящих в последний базис, при котором получен оптимальный план исходной задачи. В последний базис входят векторы A5, A4, A2; значит,

1 -1 2

D = (A5, A4, A2)= -1 2 -4

1 0 3

Обратная матрица D-1 образована из коэффициентов, стоящих в столбцах A1, A3, A6 четвертой итерации:

2 1 0

D-1 = -1/3 1/3 2/3

-2/3 -1/3 1/3

Из этой же итерации следует С* = (— 3; —1; 1). Таким образом

2 1 0

Y = С*D-1= (-3; -1; 1) · -1/3 1/3 2/3

-2/3 -1/3 1/3

Y*=(-19/3; -11/3; -1/3),

т. е. yi= С*Хi, где Хi — коэффициенты разложения последней ите­рации, стоящие в столбцах векторов первоначального единичного базиса.

Итак, i-ю двойственную переменную можно получить из значения оценки (m + 1)-й строки, стоящей против соответствующего вектора, входившего в первоначальный единичный базиc, если к ней приба­вить соответствующее значение коэффициента линейной функции:

у1 = 19/3 + 0 = — 19/3; y2= -11/3 + 0 = -11/3; у3= -1/3+0 = -1/3. При этом плане max f = -46/3.

3. Симметричные двойственные задачи

Разновидностью двойственных задач линейного , программирования являются двойственные симметричные задачи, в ко­торых система ограничений как исходной, так и двойственной задач задается неравенствами, причем на двойст­венные переменные налагается условие неотрицательности.

Исходная задача. Найти матрицу-столбец Х = (x1, x2, …, xn), которая удовлетворяет системе ограничений

(1.12). АХ0, Х>0

и минимизирует линейнуюфункцию Z = СХ.