а)
Атомом назовем также функцию
Данный параграф посвящен аналогу теоремы, доказанной в 1974 году Р.Койфманом о том, что функция
При этом
Роль атомических разложений заключается в том, что они в ряде случаев позволяют свести вывод глубоких фактов к относительно простым действиям с атомами.
В частночти, из атомического разложения функций, принадлежащих пространству
где
Глава I.
Основные сведения об интеграле Пуассона и
пространствах ,
и
§I.1.Интеграл Пуассона.
Пусть ¦(x) , g(x) , xÎR1 –суммируемые на [-p, p] , 2p- периодические, комплекснозначные функции. Через f*g(x) будем обозначать свертку
Из теоремы Фубини следует, что свертка суммируемых функций также суммируема на [-p,p] и
cn ( f*g ) = cn ( f )× c-n ( g ) , n = 0, ±1 , ±2 , ... ( 1 )
где { cn ( f )} - коэффициенты Фурье функции f ( x ) :
cn (f)=
Пусть ¦ Î L1 (-p, p ) . Рассмотрим при 0 £ r < 1 функцию
¦r ( x ) =
Так как
¦r ( x ) =
где
Функция двух переменных Рr (t) , 0 £ r <1 , t Î [ -p, p ] , называется ядром Пуассона , а интеграл (3) - интегралом Пуассона .
Следовательно,
Pr ( t ) =
Если ¦Î L1 ( -p, p ) - действительная функция , то , учитывая , что
c-n ( f ) =
fr ( x ) =
=
где
F ( z ) = c0 ( f ) + 2
- аналитическая в единичном круге функция как сумма равномерно сходящегося по х ряда [5]. Равенство (6) показывает, что для любой действительной функции ¦Î L1( -p, p ) интегралом Пуассона (3) определяется гармоническая в единичном круге функция
u ( z ) = ¦r (eix ) , z = reix , 0 £ r <1 , x Î [ -p, p ] .
При этом гармонически сопряженная с u (z) функция v (z) c v (0) = 0 задается формулой
v (z) = Im F (z) =
Утверждение1.
Пусть u (z) - гармоническая ( или аналитическая ) в круге | z | < 1+e ( e>0 ) функция и ¦ (x) = u (eix) , xÎ[ -p, p ] . Тогда
u (z) =
Так как ядро Пуассона Pr (t) - действительная функция, то равенство (10) достаточно проверить в случае, когда u (z) - аналитическая функция:
Но тогда коэффициенты Фурье функции
и равенство (10) сразу следует из (2) и (3).
Прежде чем перейти к изучению поведения функции ¦r (x) при r®1 , отметим некоторые свойства ядра Пуассона:
а)
б)
в) для любого d>0
Соотношения а) и в) сразу следуют из формулы (5), а для доказательства б) достаточно положить в (2) и (3) ¦ (х) º 1.