Смекни!
smekni.com

Алгебра (стр. 2 из 2)

После создания теории комплексных чисел возник вопрос о существовании “гиперкомплексных чисел” - чисел с несколькими “мнимыми единицами”. Такую систему чисел, имевших вид а + bi+ cj +dk, где i2=j2 =k2= - 1, построил в 1843 г. ирландский мате­матик У. Гамильтон, который назвал их “ква­тернионами”. Правила действий над кватер­нионами напоминают правила обычной ал­гебры, однако их умножение не обладает свойством коммутативности (переместитель­ности): например, ij= k, aji= -k

С операциями, свойства которых лишь от­части напоминают свойства арифметических операций, математики XIX в. столкнулись и в других вопросах. В 1858 г. английский мате­матик А. Кэли ввел общую операцию умно­жения матриц и изучил ее свойства. Оказа­лось, что к умножению матриц сводятся и многие изучавшиеся ранее операции. Ан­глийский логик Дж. Буль в середине XIX в. начал изучать операции над высказываниями, позволявшие из двух данных высказываний построить третье, а в конце XIX в. немецкий математик Г. Кантор ввел операции над мно­жествами: объединение, пересечение и т.д. Оказалось, что как операции над высказыва­ниями, так и операции над множествами обладают свойствами коммутативности (пере­местительности), ассоциативности (сочета­тельности) и дистрибутивности (распредели­тельности), но некоторые их свойства не похожи на свойства операций над числами.) Таким образом, в течение XIX в. в матема­тике возникли разные виды алгебр: обычных чисел, комплексных чисел, кватернионов, ма­триц, высказываний, множеств и т.д. Каждая из них имела свои правила, свои тождества, свои методы решения уравнений. При этом для некоторых видов алгебр правила были очень похожими. Например, правила алгебры рациональных чисел не отличаются от правил алгебры действительных чисел. Именно по­этому формулы, которые в VI классе устана­вливают для рациональных значений букв, оказываются верными и для любых действи­тельных (и даже любых комплексных) значе­ний тех же букв. Одинаковыми оказались и правила в алгебре высказываний и в алгебре множеств. Все это привело к созданию аб­страктного понятия композиции, т.е. опера­ции, которая каждой паре (а, b) элементов не­которого множества Х сопоставляет третий элемент с того же множества. Композициями были сложение и умножение как натуральных, так и любых целых, а также рациональных, действительных и комплексных чисел, “умно­жение” матриц, пересечение и объединение подмножеств некоторого множества U и т.д. А вычитание и деление во множестве нату­ральных чисел не являются композициями, так как и разность, и частное могут не быть натуральными числами.

Изучение свойств композиций разного вида привело к мысли, что основная задача ал­гебры - изучение свойств операций, рассма­триваемых независимо от объектов, к ко­торым они применяются. Иными словами, алгебра стала рассматриваться как общая на­ука о свойствах законов композиции, свой­ствах операций. При этом два множества, в каждом из которых заданы композиции, стали считаться тождественными с точки зре­ния алгебры (или, как говорят, “изоморфны­ми”), если между этими множествами можно установить взаимно-однозначное соответ­ствие, переводящее один закон композиции в другой. Если два множества с композиция­ми изоморфны, то, изучая одно из них, мы уз­наем алгебраические свойства другого.

В наши дни алгебра - одна из важнейших частей математики, находящая приложения как в сугубо теоретических отраслях науки, так и во многих практических вопросах.