АВ х СD = ( -3) х 3 + 3 х 3 + 0 х 3 = 0.
Задача 2.
Дан произвольный треугольник АВС. Доказать, что можно построить треугольник, стороны которого равны и параллельны медианам треугольника АВС.
Решение.
Обозначим медианы треугольника АВС через ВЕ, СF и обозначим векторы, идущие вдоль сторон треугольника АВС, через а, в, с:
(рис.8). Тогда
аналогично определяются и другие медианы:
ВС + СА + АВ = а + в + с =0,
то мы имеем:
А это значит (в силу условия замкнутости), что ломаная А1В1С1D1 является замкнутой, т.е. точка D1 совпадает с А1.
Таким образом, мы получаем треугольник А1В1С1 (рис.9), стороны которого равны и параллельны медианам АD, ВЕ, СF исходного треугольника.
Задача 3.
Доказать, что для любого треугольника имеет место формула
с2 = а2 + в2 – 2ав х соs С (теорема косинусов)
с = АВ (рис.10).
Тогда с = а – в, и мы имеем
(учитывая, что угол между векторами а и в равен С):
с2 = ( а – в )2 = а2 – 2ав + в2 = а2 – 2ав х соs С + в2.
Задача 4.
Докажите, что сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.
Решение.
Пусть четырехугольник АВСD – параллелограмм (рис.11). Имеем векторные равенства
Возведем эти равенства в квадрат. Получим:
Сложим эти равенства почленно. Получим:
2АВ2 + 2 АD2 = АС2 + DВ2.
Так как у параллелограмма противолежащие стороны равны, то это равенство и означает, что сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон, что и требовалось доказать.
Задача 5.
Решение.
Задача 6.
Найдем сначала координаты векторов. АВ = ( -3; 3; 0) и СD ( 3; 3; 3).
Рассмотренные выше примеры задач показывают, что векторный метод является весьма мощных средством решения геометрических и многих физических (и технических) задач.
Используемая литература.
1. “Векторы в школьном курсе геометрии”. (1976г.) В.А.Гусев. Ю.М.Колягин. Г.Л.Луканкин.
2. “Векторы в курсе геометрии средней школы. (1962г.) В.Г.Болтянский. И.М.Яглом.