Проверим состоятельность этой оценки, выразив ее через среднее арифметическое квадратов наблюдений:
., где правая часть есть среднее арифметическое значений случайной величины X2 сходится по вероятности к ее мат. ожиданию:
. Вторая часть сходится по вероятности к ; вся величина сходится по вероятности к . Значит, оценка состоятельна.Проверим ее на несмещенность, подставив в
вместо его выражение и произведем действия: .Так как D* не зависит от выбора начала координат то отцентрируем все случайные величины
. Тогда .Найдем мат. ожидание величины D*:
.Но
, , и получаем: .Отсюда видно, что величина D* не является несмещенной оценкой для дисперсии D; ее мат. ожидание не равно D, а несколько меньше. Пользуясь оценкой D* вместо D, будет проходить систематическая ошибка в меньшую сторону, чтобы ее ликвидировать введем поправку
тогда мы получим несмещенную оценку для дисперсии:При больших n поправочный коэффициент
становится близким к единицы, и его применение теряет смысл. Поэтому в качестве приближенных значени (оценок) этих характеристик нужно взять: , .3 Практическая часть
Упорядоченная выборка
где n=100 количество замеров :70.1 | 74.7 | 79.1 | 79.4 | 80.0 | 82.0 | 82.2 | 83.4 | 83.8 | 85.0 |
86.1 | 86.2 | 86.3 | 86.5 | 86.6 | 86.7 | 86.9 | 87.2 | 88.2 | 88.4 |
88.6 | 88.7 | 89.4 | 90.4 | 90.8 | 90.9 | 91.1 | 91.3 | 93.1 | 93.7 |
94.5 | 94.7 | 94.7 | 94.8 | 94.9 | 94.9 | 95.1 | 95.2 | 95.3 | 95.6 |
96.5 | 96.5 | 96.6 | 96.9 | 97.2 | 97.4 | 97.7 | 98.1 | 98.4 | 98.8 |
98.6 | 99.0 | 99.4 | 100.0 | 100.0 | 100.1 | 100.4 | 100.5 | 100.6 | 100.8 |
101.4 | 101.6 | 101.8 | 101.9 | 101.9 | 102.1 | 102.3 | 102.7 | 102.8 | 102.9 |
103.6 | 103.8 | 103.8 | 104.6 | 105.4 | 105.9 | 106.1 | 106.6 | 107.2 | 107.3 |
107.5 | 107.7 | 109.1 | 110.2 | 110.3 | 110.4 | 111.8 | 111.8 | 112.4 | 112.5 |
112.8 | 113.0 | 113.6 | 113.9 | 113.9 | 114.3 | 116.8 | 118.3 | 122.7 | 124.6 |
Размах выборки r=Xn-X1=124.6-70.1= 54.5
На основе выше изложенной теории для исследования статистики составляем табл. 3.1.
Табл. 3.1
Интервалы | Число попаданий в интервал | Частота попаданий в интервал | Высоты интервалов для гистограммы |
1. 70.10 - 75.55 2. 75.55 - 81.00 3. 81.00 - 86.45 4. 86.45 - 91.90 5. 91.90 - 97.35 6. 97.35 - 102.80 7. 102.80 - 108.25 8. 108.25 - 113.70 9. 113.70 - 119.15 10.119.15 - 124.60 | 2 3 8 15 17 23.5 13.5 11 5 2 | 0.020 0.030 0.080 0.150 0.170 0.235 0.135 0.110 0.050 0.020 | 0.0036697 0.0055045 0.0146788 0.0275229 0.0311926 0.0431192 0.0247706 0.0201834 0.0091743 0.0036697 |
Сумма 1.000 |
По построенной гистограмме (рис. 3.1) можно предположить, что данное распределение подчиняется нормальному закону. Для подтверждения выдвинутой гипотезы проведем оценку неизвестных параметров, для мат. ожидания
,для оценки дисперсии
.Полагая в выражении нормальной плотности
, гдеи пользуясь, либо приложением 4 в учебнике Вентцель Е.С., Овчаров Л.А.” Прикладные задачи теории вероятностей.” - М.: Радио и связь, 1983, либо как в нашем случае воспользоваться системой MathCad , получим значения на границах разрядов табл. 3.2 :
Табл. 3.2
x | f(x) |
1. 70.102. 75.553. 81.004. 86.455. 91.906. 97.357. 102.808. 108.259. 113.7010.119.1511.124.60 | 0.00104450.00363540.00970320.01986010.03117170.03751900.03463000.02451130.01330430.00553770.0017676 |
и построим выравнивающую ее нормальную кривую рис. 3.1
Рассчитаем вероятность (табл. 3.3) попадания с. в. Х в k-й интервал по формуле
Табл. 3.3
1. 70.10 - 75.55 2. 75.55 - 81.00 3. 81.00 - 86.45 4. 86.45 - 91.90 5. 91.90 - 97.35 6. 97.35 - 102.80 7. 102.80 - 108.25 8. 108.25 - 113.70 9. 113.70 - 119.15 10.119.15 - 124.60 | 0.0115694 0.0344280 0.0790016 0.1398089 0.1908301 0.2009057 0.1631453 0.1021833 0.0493603 0.0183874 |
Для проверки правдоподобия гипотезы воспользуемся критерием согласия
для этого возьмем данные из табл. 3.1 и 3.3 и подставим в формулу :Рис. 3.1
Определяем число степеней свободы (10-1-l)=7, где l - число независимых условий (количество параметров подлежащих оценки в нашем случаи их l=2, это mx, Dx - для нормального распределения). По приложению 3 в учебнике Вентцель Е.С., Овчаров Л.А. ”Теория вероятностей и ее инженерные приложения.” - М.: Наука, 1988 находим при r=7, p=0.95
=2.17 для уровня значимости и видим, что , но даже меньше.Это свидетельствует о том, что выдвинутая нами гипотеза о нормальности распределения не противоречит опытным данным.