Смекни!
smekni.com

Спонтанное нарушение симметрии (стр. 1 из 3)

Государственная академия управления

им. С.Орджоникидзе

Кафедра естествознания ГАУ

Специализация – “Управление персоналом”

КУРСОВАЯ РАБОТА

на тему

«Спонтанное нарушение симметрии»

Выполнена студенткой Евдокимовой Т.А.

1998г.

СОДЕРЖАНИЕ:

1. Введение 3

2. Симметрия законов природы 4

3. Спонтанное нарушение симметрии 10

4. Заключение 13

Введение

Проблеме симметриипосвящена поистине необозримая литература. От учебников и научных монографий до произведений, апеллирующих не столько к чертежу и формуле, сколько к художественному образу, и сочетающих в себе научную достоверность с литературной отточенностью.

Вся ошеломляющая пестрота и разнообразие окружающего нас мира подчинены проявлениям симметрии, о чем удачно в свое время высказался Дж. Ньюмен: "Симметрия устанавливает забавное и удивительное сродство между предметами, явлениями и творениями, внешне, казалось бы, ничем не связанных: земным магнетизмом, женской вуалью, поляризованным светом, естественным отбором, теорией групп, инвариантами и преобразованиями, рабочими привычками пчел в улье, строением пространства, рисунками ваз, квантовой механикой, скарабеями, лепестками цветов, интерференционной картиной рентгеновских лучей, делением клеток, равновесными конфигурациями кристаллов, романскими соборами, снежинками, музыкой, теорией относительности...".

В "Кратком Оксфордском словаре" симметрия определяется как "красота, обусловленнаяпропорциональностью частей тела или любого целого, равновесием, подобием, гармонией, согласованностью" (сам термин "симметрия" по- гречески означает "соразмерность", которую древние философы понимали как частный случай гармонии - согласования частей в рамках целого).

Симметрия является одной из наиболее фундаментальных и одной из наиболее общих закономерностей мироздания: неживой, живой природы и общества. Ee математическое выражение ~ теория групп - была признана одним из самых сильных средств познания первоначально в математике, а позднее - в науке и искусстве. Симметрия в рамках общей теории систем (ОТС) предстает как системная категория, обозначающая свойство системы "С" совпадать с самой собой по признакам "П" после изменений "И".

Симметрия как общенаучное понятие на одном уровне делится на три типа: структурную, геометрическую и динамическую. На следующем уровне каждый тип симметрии включает классическую и неклассическую симметрии, которые в свою очередь имеют разновидности следующего уровня подчинения. Так, неклассическая симметрия структурного типа в числе других содержит три соподчиненных понятия: антисимметрию, цветную симметрию и криптосимметрию. Каждая из них далее выступает в виде простой и кратной симметрии и т.д. На каждой ветви "дерева" данного понятия можно выбрать и родовидовые отношения (по вертикали), которые подчиняются закону обратного отношения содержания и объема. Так, на ветви структурной симметрии такими отношениями являются симметрия (вообще) структурнокристаллографическая, неклассическая антисимметрия кратная.

Симметрия законов природы


Что такое симметрия? Обычно под этим словом

понимают либо зеркальную симмет­рию, когда левая половина предмета зеркаль­но симметрична правой, либо централь­ную, как, например, у пропеллера.

В этом понимании симметрия означает неизменность предмета при отражении в зеркале или при отражении в центре. Но вернем слову его перво­начальное значение — «соразмерность» — и будем понимать под ним неизменность не толь­ко предметов, но и физических явлений, и не только при отражении, но и вообще при какой-либо операции — при переносе установки изодного места в другое или при изменении момента отсчета времени. Для проверки, ска­жем, зеркальной симметрии явления можно построить установку с деталями и расположе­нием частей, зеркально симметричными отно­сительно прежней. Явление зеркально сим­метрично, если обе установки дают одинаковые результаты.

Проследим сначала, как проявляется самая простая симметрия — однородность и изотропность (эквивалентность всех направлений) пространства. Она означает, что любой физический прибор — часы, телеви­зор, телефон — должен работать одинаково в разных точках пространства, если не изменя­ются окружающие физические условия. То же самое относится и к повороту прибора, если отвлечься от силы тяжести, которая выделяет на поверхности Земли вертикальное направ­ление. Эти замечательные свойства простран­ства использовались уже в глубокой древно­сти, когда геометрия Евклида применялась на практике. Ведь геометрия как практическая наука имеет смысл только в том случае, если свойства геометрических фигур не меняются при их повороте и одинаковы во всех районах Земли.

Измерения показали, что геометрические теоремы, примененные к реальным физическим объектам, действительно, выполняются с ко­лоссальной точностью для тел любого размера:в каком бы месте мы их ни проверяли и как бы ни поворачивали тела. Одно из таких изме­рений было сделано в 1820-х гг. известным немецким математиком К. Гауссом, который проверил, не отклоняется ли геометрия нашего мира для больших размеров от евклидовой, определяя свойства треугольника, образован­ного вершинами трех гор. Сейчас известно, что на масштабах Вселенной и вблизи тяже­лых масс геометрия отличается от евклидовой. Но это — очень малые поправки, далеко за пределами точности измерений Гаусса.

Не только геометрические, свойства, но и вообще все физические явления не зависят от перемещений или поворотов.

Итак, физические законы должны быть инвариантны (неизменны) относи­тельно перемещений и поворотов. Это требо­вание облегчает выводы уравнений физики и придает им более стройный вид.

Еще одна важная симметрия — однородность времени. Все физические процессы протекают одинаково, когда бы они ни начались. Электроны в атомах далеких звезд движутся в том же ритме, что и на Земле. Частота испускаемого ими света такая же, несмотря на то что свет был испу­щен миллиарды лет тому назад.

Законы природы не изменяются и от замены направления течения времени на обратное. Это означает, что взгляд назад являет такуюже картину, как и взгляд вперед. Так ли это? Нам случалось видеть, как яйцо, упавшее со стола, растекается, но никогда не доводилось наблюдать, как белок и желток собираются обратно в скорлупу и «прыгают» на стол. И тем не менее молекулы в принципе могут случайно так согласовать свои движения, что невероят­ное свершится. В малом масштабе явления такого рода происходят с большой вероят­ностью: молекулы в малом объеме газа под влиянием столкновений то стекаются вместе, то растекаются так, что их плотность только в среднем является постоянной.

Глубокий анализ подобных фактов привел физиков к заключению, что «обратимость» времени существует не только в механике и электродинамике, где она прямо вытекает из уравнений, но и во многих других явлениях природы.

Симметрия, связанная с изменением направ­ления течения времени,— приближенная сим­метрия. Ее -нарушение наблюдается в слабых распадах некоторых элементарных частиц — нейтральных мезонов. И хотя эти наруше­ния очень малы, они играют весьма важную роль в физике элементарных частиц, так как приводят к абсолютному различию междучастицами и античастицами: К0-мезоны несколько чаще распадаются с испу­сканием антилептонов — позитронов, антимюонов, чем лептонов — электронов и мюонов. Природа нарушения инвариантности относи­тельно обращения времени пока неизвестна, и даже неясно, какие взаимодействия нару­шают эту инвариантность.

Существует, кроме того, зеркальная симметрия — волчок, закрученный напра­во, ведет себя так же, как закрученный налево, единственная разница в том, что фигуры дви­жения правого волчка будут зеркальным отра­жением фигур левого.

Существуют зеркально асимметричные молекулы, но, если они образу­ются в одинаковых условиях, число левых мо­лекул равно числу правых.

Зеркальная симметрия явлений природы неточная, как и большинство других симмет­рий. В слабых взаимодействиях, ответствен­ных за радиоактивный распад, она нарушается. Даже в явлениях, не связанных с радиоактивными превращения­ми, влияние слабых взаимодействий приводит к ее небольшому нарушению. Так, в атомах относительная неточность зеркальной сим­метрии — порядка 10-15. Однако влияние этого ничтожного нарушения на переходы между очень близкими уровнями не так мало (порядка 10-3 - 10-8». В 1978 г. Л. М. Бар­кову и М., С. Золотареву из Новосибирского научного городка удалось обнаружить это явление.

Важнейшая симметрия, оказавшая влияние на всю современную физику, была обнаруженав начале XX в. Уже Г. Галилей открыл заме­чательное свойство механических движений: они не зависят оттого, в какой системе коорди­нат их изучать, в равномерно движущейся или в неподвижной. Нидерландский физик X. Лоренц в 1904 г. доказал, что таким свой­ством обладают и электродинамические явле­ния, причем не только для малых скоростей, но и для тел, двигающихся со скоростью, близ­кой к скорости света. При этом выяснилось, что скорость заряженных тел не может превы­сить скорости света.

Французский ученый А. Пуанкаре показал, что результаты Лоренца означают инвариант­ность уравнений электродинамики относитель­но поворотов в пространстве - времени, т. е. в пространстве, в котором кроме трех обычных координат есть еще одна — временная.