Итак, поскольку Rk убывают, можно найти такую подходящую дробь [Z1,Z2,Z3,...,Zk] = Lk/Nk, что A*Nk с точностью до выбранной погрешности близко к B*Lk, и эту величину можно выбрать за "Наименьшее Общее Кратное" чисел A и B, НОК(A,B) - наименьшее неотрицательное число нацело делящееся на A и B.
При натуральных A и B мы имеем НОК(A,B) = A*B/НОД(A,B), то же верно и для рациональных положительных чисел, для любых положительных это равенство можно считать определением НОК.
Применим эту теорию Евклида к длине синодического месяца и длине юлианского года (и то и другое - в днях): 29,53059 и 365,25. Напишем непрерывную дробь для их отношения:
29,53059/365,25 = [0,12,2,1,2,2,24,1,10,...]
Разбираем подходящие дроби, их смысл и остатки:
[0] = 0/1, R1 = 29,53059 - означает, что месяц короче года;
[0,12] = 1/12, R2 = 10,88292 - в году 12 месяцев и ещё около 11 дней;
[0,12,2] = 2/25, R3 = 7,76475 - на столько дней 25 месяцев длиннее 2 лет;
[0,12,2,1] = 3/37, R4 = 3,11817 - разница 3-х лет и 37 месяцев;
[0,12,2,1,2] = 8/99, R5 = 1,52841 - разница 99 месяцев и 8 лет;
[0,12,2,1,2,2] = 19/235, R6 = 0,06135 - на столько дней 19 юлианских лет длиннее 235 лунных месяцев!
То есть, при первом остатке меньшем суток мы получаем метонов цикл, открытый, якобы, в 433 году до н.э., когда и длина юлианского года была неизвестной! При этом считается, что и Евклид жил на сто лет позже афинянина Метона. Однако, наше значение для лунного месяца, возможно, чересчур точное: 29,53059 примерно равно 29 дней 12 часов 44 минуты 3 секунды. Легко убедиться, что та же "метонова" подходящая дробь, соответствующая первому остатку менее суток, получится при выборе длины месяца 29,53 или 29 дней 12 часов 40 минут, или 29 дней 12 часов 45 минут. Что из этого может следовать? Скорее всего, метонов цикл определён с помощью алгоритма Евклида (ведь не очень умно думать, что он вычислен прямыми наблюдениями за 400 лет до изобретения Созигеном юлианского года, а если допустить год длиной 365 суток, а месяц - 29,5 суток, то оптимальное соотношение между ними окажется 99/8: арифметическое расхождение, остаток, составит полсуток, а по наблюдениям за 8 лет - примерно 3,5 суток, что оптимальнее метоновой дроби 235/19для такой длины года).
Эти соображения, по-моему, весьма уместно добавить к размышлениям Н.А. Морозова [13, стр. 154-155] и М.М. Постникова [14, стр. 257-260] о метоновом цикле.
Алгоритм Евклида пригоден и для нахождения НОД'ов, НОК'ов наборов из более чем двух чисел. Процедура нахождения НОД(a1,a2,...,ak) состоит из повторения такого шага: из набора чисел в качестве делителя выбирается ненулевое и не самое большое из них по абсолютному значению, затем все остальные числа заменяются остатками от деления на выбранный делитель. Процедура прекращается, когда осталось только одно отличное от нуля число в наборе - оно и является искомым НОД'ом.
Остановка алгоритма гарантирована только для наборов рациональных чисел. Для прочих же возможно постоянное уменьшение чисел из набора к нулю и искусственная остановка даёт нам "НОД" с некоторой погрешностью, зависящей от числа шагов. При этом сам алгоритм может развиваться в различных направлениях, подобно корневой системе дерева, что и отличает ситуацию более чем двух несоразмеримых чисел. Но для решения нашей проблемы необходимо уметь находить Наименьшее Общее Кратное наборов чисел - синодических периодов оборота планет, а для более чем двух чисел формула, истинная для двух:
НОК(a,b) = a*b/НОД(a,b)
D = N*a <=> 1/a = N*(1/D),
НОК(a1,a2,...ak) = 1/НОД(1/a1,1/a2,...,1/ak)
Ещё удобнее в качестве величин обратных к T* выбирать не 1/T*, а 360x60x60/T* - означающее среднюю синодическую угловую скорость обращения планеты, измеренную в угловых секундах на один день, и тогда
D = 1296000/НОД(Vм,Vю,Vс,Vл), где
Vм = 1661,68 ("/день) - Марс,
Vю = 3249,08 ("/день) - Юпитер,
Vс = 3427,75 ("/день) - Сатурн,
Vл = 43886,70 ("/день) - Луна.
При таком округлении во втором знаке после запятой на интервале в 2 тысячи лет может накопиться ошибка порядка 10 градусов. Полученный результат придётся корректировать, исходя из этого допущения. Надо так же понимать, что алгоритм Евклида весьма чувствителен к ошибкам округления.
Vл - 12*Vc = 2753,7 =: Rл(1);
Vс - Vю = 178,67 =: Rс(1);
Rл(1) - Vм = 1092,02 =: Rл(2);
Vс - 3*Rл(2) = 151,69 =: Rс(2);
Rс(1) - Rс(2) = 26,98 =: Rс(3);
Rл(1) - 2*Rл(2) = 569,66 =: Rл(3);
Rл(3) - 4*Rс(2) = -37,1 =: -Rл(4);
Rл(4) - Rс(3) = 10,12 =: Rл(5);
Rс(3) - 2*Rл(5) = 6,74 =: Rс(4);
Rл(4) - 5*Rс(4) = 3,4 =: R.
Остановимся на последнем остатке - ему соответствует общее кратное (несколько удалившееся от своего истинного значения из-за погрешностей):
D = 1296000"/3,4"/д = 381176,47 дней
За это время Марс сделал столько синодических оборотов примерно:
381176/779,933 = 488,73
Марс делает 489 оборотов за 381387 +/- 5 дней; за это время Юпитер делает 956 оборотов и ещё от 45 до 55 градусов дополнительно; Сатурн за это же время делает 1008 оборотов и ещё от 253 до 263 градусов дополнительно, или же 1009 оборотов без 97...107 градусов.
Разделим синодический период Марса на таковые же Юпитера и Сатурна:
Tм/Tю = 1,9552951... = 2 - 0,0447...
то есть, за время Tм Юпитер делает 2 оборота без 16 градусов, приблизительно.
Tм/Tс = 2,062817...
то есть, за время Tм Сатурн делает 2 полных оборота и ещё 22,6 градусов, приблизительно.
Следовательно, чтобы скомпенсировать излишек поворота Юпитера за 489 оборотов Марса надо добавить
(50 +/- 5)/16 = 2,8...3,4 => 3 или 4 оборота Марса.
А чтобы скомпенсировать аналогичный недостаток до полного круга Сатурна, надо добавить
(102 +/- 5)/22,6 = 4,3...4,7 => 4 или 5 оборотов Марса.
Четвёрка наиболее подходит для обоих случаев, поэтому лучшее решение следует искать в окрестности 489 + 4 = 493 оборотов Марса, что составляет 384507 дней приблизительно (1053 юлианских года без 101 дня). Дальнейшее уточнение решения будем делать по Луне. В последнем количестве дней укладываются примерно 13020 лунных месяцев и ещё 18-19 дней. Возьмём 13021 лунный месяц (384518 дней приблизительно), как наиболее близкое целое число и проверяем его Марсом, Юпитером и Сатурном.
За время D = 384518 дней Марс делает 493,014... синодических оборота, то есть его аспект с Солнцем увеличивается на 0,014...x360 = 5,1 градус. За это же время Юпитер делает 963,988... = 964 - 0,0118... синодических оборотов, то есть его аспект с Солнцем уменьшается на 4,3 градуса. Сатурн делает 1016.998... синодических оборотов, - его аспект с Солнцем уменьшается примерно на 1 градус. Аспект Луны с Солнцем за сутки уменьшается на 12...13 градусов, а за 384518 дней - на 3 градуса примерно увеличивается. Следовательно, с точностью до суток мы обнаружили решение нашей системы неравенств с орбом E = 7 градусов (из них 2,1 - отданы на погрешности синодических угловых скоростей). Надо заметить, что за это время аспект Марса с Юпитером изменится примерно на 10 градусов из-за разнонаправленности изменений аспектов этих планет с Солнцем. Тем не менее, D можно считать вполне удовлетворительным решением задачи:
D = 384518 дней = 1052 юл. года + 275 дней
(Nм = 493, Nю = 964, Nс = 1017, Nл = 13021)
Очень интересно, что найденное D далеко от целого числа юлианских лет. За это время происходит сдвиг на три сезона - Солнце проходит 9 знаков Зодиака. Как можно сделать такую ошибку при датировании гороскопа?
В нашем случае не реализуются возможности ошибки за счёт разницы в начале года: от 1 января до 1 сентября проходят 243-4 дня, а от 1 марта до 1 января - 306 дней, между 1 марта и 1 сентября - 184 дня, а наоборот - 181-2 дня.
Но более реальна иная возможность, поскольку 275 дней примерно проходит от Православной Пасхи до Рождества. Поскольку Рождество - праздник неподвижный, а Пасха - переходящий, мы имеем возможность датировать опорную дату сдвига более точно. Рождество празднуется 25 декабря, за 275 суток до этого - 25 марта, неподвижный праздник Благовещания Пресвятой Богородицы, и, когда он совпадает с Пасхой, то это значительное церковное событие называется Кириопасхой. По пасхальной таблице Н.А. Морозова [13, стр. 144-145] найдём годы, когда праздновалась Кириопасха. Хотя, традиционно считается, что православная пасхалия согласована и утверждена на Первом Церковном Соборе 325 г. в Никее, за начальную точку отсчёта мы возьмём начало эры, а за конечную возьмём 530 г. н.э., поскольку в 530 + 1052 = 1582 г. н.э. западная церковь произвела календарную реформу, к тому же в это время хронологическая схема И. Скалигера уже была составлена. Итак, годы Кириопасхи, воскресения 25 марта, до 530 г. н.э. таковы:
31, 42, 53, 126, 137, 148, 221, 232, 316, 395, 479, 490.
Их сдвиги вверх по хронологической шкале на 384518 дней дают понедельники 25 декабря следующих годов (интересно, что во все эти годы пасха попадает на 9 апреля):
1083, 1094, 1105, 1178, 1189, 1200, 1273, 1284, 1368, 1447, 1531, 1542.
Среди годов Кириопасхи особенно интересны две даты: 25 марта 31 г. н.э. - считается, что именно ею Дионисий Малый в 6-ом веке определил Воскресение Иисуса Христа (хотя после Дионисия принимались и иные годы - 30, 32, 45, и т.д.), сам Дионисий Малый при подъёме на 1052 года накладывается на ученика И. Скалигера Дионисия Петавиуса (Маленького) в 16-17 веке; а 395 год известен тем, что именно эту дату определил Н.А. Морозов [3, стр. 50] как время составления Откровения Иоанна Богослова, отбросив решения 1249 г. и 1486 г. (А.Т. Фоменко и Г.В. Носовский, напротив, считают последнюю из них наилучшей).
Если опорным событием сдвига является распятие и воскресение Иисуса Христа в 31 г. н.э. (по Дионисию), тогда оно является дубликатом "страстей" Григория VII Гильдебранда в 1083 году, как это описано у А.Т. Фоменко [2, стр. 260]. Посмотрим внимательно на аспекты планет к Солнцу в эти даты на полдень (согласно ZET 5.10):
25 марта 31 г. | 25 декабря 1083 г. | |
Сатурн | +77 | +71 |
Юпитер | +16 | +15 |
Марс | +45 | +39 |
Венера | +36 | -34 |
Меркурий | +11 | -23 |
Луна | +154 | +162 |
Мы видим приличное согласование по всем планетам кроме Венеры и Меркурия. Для пары 395 г. и 1447 г. мы имеем столь же сильные расхождения для внутренних планет. Но имеется пара дат, где наблюдается условное совпадение по аспекту Венеры (ZET 5.10):