Смекни!
smekni.com

Классическая физика: самоорганизующиеся системы и микромир (стр. 5 из 14)

Эти системы уже можно рассматривать как достаточно полные "классические" модели твердого тела.

В классической физике модели физические считаются приоритетными в сравнении с теоретическими. И здесь они показывают, что для объяснения межатомных связей нет нужды выдумывать "новые сущности" - гипотетические поля и силы иной природы, не существующие в макромире. Всё объясняется полями и силами электромагнитными. Полям иной природы не остаётся места. Современная теория не знает моделей физических, пользуется лишь теоретическими, не способными существовать в реальности, ничего не может противопоставить вещественным моделям классической физики, и вынуждена о них умалчивать.

Неизлучающий атом Резерфорда

В 1911 году Резерфорд открыл атомное ядро и впервые предложил модель атома, в которой электроны вращались вокруг ядра. Атом Резерфорда оказался электромагнитной системой, потому перед классической теорией Фарадея-Максвелла открывался доступ к микромиру. Но через несколько лет эта теория была "отброшена" от микромира. Современная физика, пришедшая в результате научной революции, объявила эту теорию несостоятельной, неприменимой к микромиру на том основании, что она якобы в принципе не способна объяснить: почему же электроны, вращаясь в атоме по такой модели, не излучают электромагнитные волны и не теряют энергию?

На самом же деле ответ на этот вопрос тривиален, и в 1911 году был уже очевиден, но почему-то не был опубликован. Казалось бы, всё просто и ясно: электроны, двигаясь без атомного ядра, излучают в пространство волновое поле, а вместе с ядром, двигаясь так же, не излучают, значит ядро гасит изучение электронов. Значит оно тоже излучает в дальнее пространство точно такое же периодическое поле, но в противофазе. Например, действует как специфический резонансный отражатель. Эти два поля, становясь вдали от атома равными и противофазными, взаимно погашаются. Атом в целом не излучает, энергия из атома не уносится.

Тем не менее, в тысячах учебных и популярных академических изданий заявлено четко и недвусмысленно, что классическая теория не давала никакого ответа вообще, в принципе дать его не могла и не может. Приведенный здесь ответ не только не оспорен, но вообще не упоминается в литературе даже при самом подробном изложении. Вопрос: "не излучает ли ядро?" никогда не ставился и не обсуждался. Следовательно, физике он не известен, а выводы о несостоятельности классической теории сделаны на основании весьма неполных знаний. Кстати, сделаны они давно, примерно в 1918 году. Задача же сводилась к свойствам атомного ядра, знаний о нем еще не было, и нельзя было отбросить это решение, сказав, что ядро в атоме не излучает. Физики просто не нашли решения. Не было перед классической теорией никаких тупиков.

Итак, классическая теория приводит нас к выводу: ядро в атоме излучает, причем всегда так, что гасит излучения электронов при любых устойчивых орбитах. Многим людям такая способность ядра кажется невероятной, невозможной. Заявляют, что это чепуха. Возможно, таково же и Ваше мнение. Следует ли на этом основании "отбросить" математическую теорию поля, которая проверена более чем вековой практикой, "отбросить" всю физику века великих открытий, и верить Вашему интуитивному мнению без всяких доказательств? Физика - это наука, а не религия, и данный вопрос - не вопрос веры. Нужны доказательства и разъяснения.

Поскольку этот вопрос по-прежнему имеет фундаментальный характер: быть или не быть классической физике, рассмотрим его еще раз сначала. Будем дальше говорить не прямо об атоме, а о его классической макромодели, чтобы не было ссылок на некомпетентность автора в физике. И задачу рассмотрим в сугубо технической и более общей постановке, позволяющей не знать, что такое электрон, что такое ядро и каковы их свойства. Сформулируем ее так: электромагнитная система из двух неизвестных объектов А и Б не излучает в пространство, хотя А (“электроны” в модели, в частном случае) заведомо излучает периодическое волновое поле. Внутренних потерь энергии в системе нет. Требуется объяснить: в чем причина отсутствия излучений?

В такой постановке задача имеет простой и однозначный ответ: следовательно, объект Б тоже излучает поле, и такое, что вдали от системы эти два поля, накладываясь друг на друга и суммируясь, всюду обращаются в нуль. И неважно, каковы эти излучения, один ли “электрон” в модели или их много, вращаются они или колеблются, или излучают, вообще не двигаясь, – это неизвестный объект, заведомо излучающий. Динамические поля излучений погашаются в пространстве за пределами модели точно так же, как статические: поле “электронов” – полем “ядра”.

Очевидно, оба периодических поля – объектов А и Б - должны вдали от системы ("в бесконечности") становиться точно равными друг другу и следовать там в противоположных фазах. Тогда векторы полей в каждой точке дальнего пространства равны и направлены встречно, их сумма вдали от системы равна нулю, энергия из системы не уносится, источники излучений не теряют своей энергии, потому излучения не прекращаются. Равенство полей вблизи и внутри системы не требуется, там они могут различаться, и тогда динамическое поле остается лишь вблизи объектов, энергию содержит, но не уносит ее в пространство. В предыдущем разделе было показано, что возможны неизлучающие пары излучателей, расположенных не только один внутри другого, как в атоме, но и пространственно друг от друга отдаленных.

Ответ на вопрос в общей форме относится также к моделям молекул и тел, как бы разделенным на произвольные части А и Б. Части излучают, целое не всегда. Не излучающий в пространство источник излучения может быть произвольно поделен на два, излучающих в дальнее пространство равно и противофазно.

Итак, вопрос решен, компетенция теории поля исчерпана, закончившись у границ объектов. Дееспособность теории внутри атома и до таких границ доказана. Вопрос о том, почему и как излучает ядро, относится уже к теории ядра, но не к теории поля, точнее, для нее не обязателен. Не было причин объявлять ее несостоятельной или не применимой к микромиру.

На этом можно бы и закончить, но многим людям кажется, что здесь классическая физика снова попадает в тупик, не умея ответить на новый, более сложный вопрос: каким же чудесным образом излучение ядра всегда становится точно равным излучению электронов при любых устойчивых орбитах и погашает его полностью? Однако ответы есть.

Естественно, сначала нужно составить "классическое" представление об атомном ядре и отыскать предметы, которые могли бы служить его макромоделью, составлять вместе с бегущими вокруг них зарядами самоорганизующиеся системы с подходящими свойствами.

Любой реальный предмет, если вокруг него вращать заряд, будет хоть как-нибудь излучать, но, как правило, – ничтожно. Если же в этом предмете возможны колебания, и частота вращения заряда попадает с ними в резонанс, то колебания будут “раскачиваться” до больших амплитуд, излучения станут существенными, особенно при отсутствии внутренних потерь энергии. Видимо, первичной моделью атомного ядра могла бы служить какая-то колебательная система. Например, такая.

Движущийся по окружности заряд излучает почти так же, как два элементарных точечных электрических осциллятора (вибратора Герца), которые перпендикулярно ориентированы и колеблются со сдвигом фаз 90 градусов. Но несколько неточно, т.к. заряд на орбите – лишь в первом приближении точечный излучатель. Однако если такую пару вибраторов установить в центр вращения и присоединить к колебательным контурам, настроенным на частоту вращения заряда, то мощность излучения из модели уменьшится порядка на 3 - 4. И сложится это само собой, автоматически.

Поясним. Колебательный контур и вибратор вместе будем понимать как единую излучающую колебательную систему, а колебания в контуре и излучение вибратора - как единый колебательно-волновой процесс в этой системе. Процессы подвижны по амплитудам и фазам. Под действием излучения зарядов будут развиваться процессы лишь при таких фазах, при которых излучения вибраторов отчасти погашают излучения зарядов, уменьшая общую мощность уходящего из модели потока излучений. Это означает, что такие процессы принимают энергию излучения зарядов, за счет чего и развиваются, однажды возникнув. Развиваясь, они принимают всё больше энергии, пока отток от них энергии излучений не сравняется с притоком. Иные же процессы, даже возникнув, излучат свою энергию и затухнут. Останутся лишь колебания при таких фазах, при которых приём энергии наиболее эффективен.

Поскольку двух изучающих колебательных систем недостаточно для полного погашения излучений, будем добавлять к модели ядра всё новые и новые колебательные системы, с той же частотой резонанса, но излучающие различно, а также системы с частотами, кратными основной. Пока модель излучает, она способна питать энергией всё новые колебания, которые и развиваются, пока излучения не прекратятся. Значит, здесь нужно множество колебательно-волновых систем или одна сложная система со множеством резонансов. Такими системами бывают объёмные резонаторы. Например, капли и шарики из диэлектриков. Они тоже способны содержать большое разнообразие электромагнитных колебаний и излучать волны разнообразно.

К модели ядра в виде открытого объёмного резонатора ведут и общие классические представления о предметах природы. Классическая физика не знает принципиальных различий между предметами макромира и микромира. В согласии с ней мы должны считать атомные ядра и электроны предметами, имеющими объем, несущими статический заряд, и состоящими из какого-то очень плотного материала, в котором нет внутренних потерь энергии. Они должны быть способными излучать волны, длины которых много больше самих этих предметов, поскольку длины волн, излучаемых электронами в атоме, много больше размеров ядра.