Смекни!
smekni.com

Волновой генетический код (стр. 4 из 23)

Вернемся вновь к общепринятым поначалу основным положениям генетического кода: он является триплетным, неперекрывающимся, вырожденным, не имеет “запятых”, т.е. кодоны ничем не отделены друг от друга. И наконец, он универсален. Что осталось от этих положений? Фактически ничего. В самом деле, код, видимо, является двух-, трех-, четырех-, ... n-буквенным как фрактальное и гетеромультиплетное образование. Он перекрывающийся. Он имеет запятые, поскольку гетерокодоны могут быть отделены друг от друга последовательностями с иными функциями, в том числе с функциями пунктуации. Код не универсален - в митохондриях он приобретает специфические черты. Как понимать генетический код с учетом приведенных противоречий и предлагаемой нами логики рассуждений?

Для снятия этих противоречий можно постулировать качественную, упрощенную, первичную версию вещественно-волнового контроля за порядком выстраивания аминокислот в ассоциате аминоацилированных тРНК как предшественнике белка. С этой позиции легче понять работу генетического, а точнее белкового, кода как одной из множества иерар-хических программ вещественно-волновой самоорганизации биосистемы. В этом смысле такой код - первый этап хромосомных планов построения биосистемы, поскольку язык генома многомерен, плюралистичен и не исчерпывается задачей синтеза протеинов. Более детальное, физико-математически формализованное и экспериментально подтверждаемое, изложение новой версии работы белок-синтезирующего аппарата разра-батывается нами в настоящее время, хотя надо признать, что это задача xxI-xxII веков.

Основные положения предлагаемой ориентировочной модели вещественно-волновых знаковых процессов при биосинтезе белков сводятся к следующему:

1. Многокомпонентный рибонуклеопротеидный белоксинтезирую-щий аппарат является системой генерации высокоорганизованных знаковых семиотико-семантических излучений акустико-электромагнитных полей, стратегически регулирующих его самоорганизацию и порядок включения аминокислот в полипептидную цепь.

2. Аминоацилированные пулы тРНК ассоциируют в последователь-ности - предшественники синтезируемых белков до контакта с А-P участком рибосомы. При этом континуум антикодонов пула комп-лементарен всей иРНК, за исключением дислокаций, определяемых наличием неканонических нуклеотидных пар.

3. Порядок чередования аминоацилированных тРНК в ассоциатах-предшественниках белков определяется знаковыми коллективными резонансами всех участников синтеза аминокислотных последовательностей. Ключевые волновые матрицы здесь пре-иРНК, а также иРНК, работающие как целостный континуум разномасштабных по длине гетерополикодонов, включая интронную фракцию пре-иРНК как возможных макроконтекстов. Главная функция волновых матриц - ассоциативно-контекстная ориентация последовательности аминоацилированных тРНК, ориентация, в большей степени, чем воблгипотеза, игнорирующая правила канонических спариваний нуклеотидов в пространстве иРНК-тРНК.

4. На рибосоме, в дополнение и (или) наряду с резонансными регуляциями взаимного расположения кодон-антикодоновых континуумов функционируют лазероподобные излучения участников данного процесса, корригирующие порядок включения аминокислотных остатков в пептид.

5. Рибосома энзиматически ковалентно фиксирует “де-юрэ” пептидные связи аминокислотных последовательностей, намеченные “де-факто” в полиаминокислотном-поли-тРНК-ассоциате, как предшествен-нике белка.

6. Резонансно-волновая “цензура” порядка включения аминокислот в пептидную цепь устраняет потенциальный семантический произвол создания ошибочных белковых “предложений”, следующий из омонимии семейств кодонов, и обеспечивает их “аминокислотное осмысление” за счет контекстного снятия омонимии неоднозначных одинаковых дублетов в кодонах. Тот же механизм работает при неоднозначностях более высокого порядка, когда число кодонов (n+1).

7. Вырожденность генетического кода необходима для пре-иРНК-иРНК-зависимого контекстно-ориентированного точного подбора ацили-рованных тРНК, определяемого характером волновых ассоциативных резонансных взаимодействий в белок-синтезирующем аппарате.

8. Один из механизмов процесса создания безошибочных после-довательностей аминоацилированных тРНК на волновых матрицах пре-иРНК- иРНК можно рассматривать как частный случай частично комплементарной реассоциации однотяжных ДНК-ДНК и РНК-ДНК или, в более общем случае, как акт самосборки, известный для рибосом, хромосом, мембран и других молекулярно-надмолекулярных клеточных структур.

Таким образом, роль иРНК дуалистична. Эта молекула, как и ДНК, в эволюции знаменует собой узловое событие - взаимодополняющее синергичное расслоение вещественной и волновой геноинформации. Неоднозначность вещественного кодирования снимается прецезионностью волнового, которое реализуется, вероятно, по механизмам коллективных резонансов и лазерно-голографических (ассоциативных, контекстных) эффектов в клеточно-тканевом континууме [25,26,29]. Мега-контекстом здесь выступает словесно-волновое Божественное Начало. Скачок к более развитому волновому регулированию трансляции РНКБелоксопровождается частичным или полным отказом от правила канонического спаривания аденина с урацилом (тимином) и гуанина с цитозином, свойственного эволюционно ранее отобранным этапам репликации ДНК и транскрипции РНК. Такой отказ энергетически невыгоден в микромасштабе, однако информационно необходим, неизбежен и энергетически предпочтителен на уровне целостного организма.

Особо подчеркнем, что контекстные ассоциативно-голографические механизмы работы белок-синтезирующей системы организмов тесней-шим образом связаны с так называемым "Фоновым Принципом", который оказался универсальным и явился предметом крупного открытия [50]. С этой позиции макроконтексты пре-информационных и контексты информационных РНК можно рассматривать как фон, который обеспечивает резкое усиление сигнала, то есть выбора именно данной из двух омонимичных аминоацилированных тРНК, которая должна войти в белковую “фразу” или “слово”. Этот выбор возможен только после выделения когерентной составляющей в форме повторов одних и тех же осмыслений дублетов-омонимов в кодонах. Эту ситуацию можно пояснить на простом примере. Скажем, в предложении надо выбрать одно из двух слов (аналогов кодонов с дублетами-омонимами). Эти слова - “суд” и “сук”. Ясно, что выбор зависит от целого предложения, от контекста, который выступает как фон, позволяющий выделить сигнал - нужное слово. Если предложение звучит “я увидел толстый сук на дереве”, то замена здесь слова “сук” на “суд” будет равносильна введению шума и потере сигнала. Вероятно, аналогична роль пре-информационных РНК и интронов - это различные уровни контекстов, которые должны быть ка-ким-то образом “прочитаны” и “осмыслены” живой клеткой. “Субъектом чтения” может выступать многоликое семейство солитонов - оптических, акустических, конформационных, вращательно-колебательных и иных.