Основываясь на сказанном, можно предсказать, что открываются следующие перспективы знаковых манипуляций с геноструктурами как основным субстратом биокомпьютеров:
1. Создание искусственной памяти на генетических молекулах, обладающей поистине фантастическим объемом и быстродействием.
2. Создание биокомпьютера на ДНК, основанного на совершенно новых принципах и сравнимого по способам обработки информации и функциональным возможностям с человеческим мозгом.
3. Осуществление дистантного управления ключевыми информационными процессами в биосистемах через искусственные биокомпьютеры (лечение рака, СПИДа, генетических уродств, управление социогенетическими процессами и, в конечном итоге, изменение времени жизни).
4. Активно защищаться от деструктивных волновых влияний через обнаруженный информационно-энергетический канал.
5. Устанавливать экзобиологические контакты.
Подводя итог, спросим : что остается от логики постановочных экспериментов с ДНК, которую предлагают Адлеман и другие исследователи в области молекулярной электроники информационных биомакромолекул? Эта логика уязвима, поскольку основана на упрощенных представлениях о работе хромосом как чисто вещественного субстрата. Волновые функции геноструктур не берутся в расчет. Это тупик, который оборачивается все более нарастающим огромным финансированием по гено-биотехнологиям, по нейрокомпьютерам со все меньшим практическим выходом. Те же пороки ожидают и молекулярную электронику в ее попытках использовать одномерное мышление относительно ДНК при создании биокомпьютера.
Такой компьютер должен имитировать функции генома в части оперирования волновой информацией - то есть создавать образы, в том числе и квази-речевые, распознавать их, манипулировать ими как командными. Такие знаковые структуры будут обладать огромной биологической активностью. Даже сейчас лазер на ДНК, “заряженный” определенными текстами, например, геном продолжительности жизни, вероятно, мог бы продлить ее у человека на 300 - 400 и более лет. Необходимо перераспределение финансирования в генетике, эмбриологии и генной инженерии, а также в молекулярной электронике. Это позволит сделать прорыв в создании компьютеров с квази-генетической памятью, объем которой превосходит все мыслимые пределы, и способных управлять суперсложными процессами, реально сравнимыми с метаболизмом и мышлением. Такие биокомпьютеры будут способны контролировать и поддерживать нормальную жизнедеятельность человека во временных масштабах, приближающихся к бессмертию.
Нами обнаружено явление перехода красного когерентного света в радиоволны при взаимодействии лазерного пучка с веществами. Рассмотрим, как формируются на порядки усиленные радиоизлучения геноструктур in vitro, формируемые за пределами лазерного резонатора, основной частью которых могут являться электроакустические поля, обнаруженные нами ранее, в частности, как волновые структуры ДНК, рибосом, коллагена и хромосом [25].
Для получения стоячей и бегущих волн на лазерном пучке, зондирующем геноструктуры, в наших экспериментах был использован специально изготовленный He-Ne лазер с мощностью излучения 2 mВт, длиной волны 632,8 нм, одночастотный со стабильным резонатором, управляемым посредством термостатирующего элемента. Схема эксперимента приводится на рис 15.
Это схема так называемого трехзеркального лазерного интерферометра имеет особенность в том, что внешнее зеркало резонатора является полупрозрачным или полностью прозрачным, а также может быть преобразовано в сложные композиции типа “сэндвич”, между слоями которого вводятся изучаемые препараты. В этой схеме имеются два информа-
Рис.15ционных канала - один традиционный оптический, а другой по эфиру - радиоволновый. Рассмотрим вначале работу оптического канала для того, чтобы понять работу второго канала. Внешнее зеркало резонатора юстируется таким образом, чтобы отраженная часть оптического луча от этого зеркала точно попадала бы в резонатор. При этом прямой из лазера и отраженный от зеркала лучи интерферометра складываются и результирующая волна от сложения сигналов, прошедшая через полупрозрачное зеркало, анализируется пространственным фильтром и попадает на кристалл фотодетектора. Пространственный фильтр, представляющий собой точечную диафрагму, жестко соединен в едином моноблоке с корпусом фотодетектора, электрический сигнал от которого наблюдается на экране осциллографа. В зависимости от того, в какой спекл попадает точечный участок фильтра, наблюдаются те или иные осциллографические сигналы, которые появляются за счет резонансного усиления радиоизлучений, формируемых за пределами лазерного резонатора.
Регистрацию радиоволн проводили “радиопрослушиванием” близлежащего пространства (в радиусе до 4-х метров) вокруг препаратов специальным образом приготовленных хромосом (сперматозоиды мыши) и ДНК из селезенки быка. Концентрированные препараты (около 1 мг/мл в дистиллированной воде, а также в определенных сочетаниях с этанолом, водой, триптофаном и гуанозин-трифосфатом) наносили тонким слоем на грань полупрозрачного зеркала (предметное стекло), накрывали вторым предметным стеклом, выдерживали 3 - 4 суток до высыхания при
, и направляли отраженный (промодулированный исследуемым препаратом) пучок света обратно в лазерный резонатор. В другой модификации использовали тонкую, отражающую свет, пленку ДНК без нанесения ее на полупрозрачное зеркало. Схема эксперимента с воздействием ультразвука на ДНК на рис.16.Рис.16
При всех способах подготовки ДНК регистрировали отчетливые радиосигналы, различающиеся по характеру в зависимости от типа исследуемых образцов или их сочетаний. Зондирование ДНК и хромосом и их комплексов с перечисленными выше веществами сопровождалось особыми радиосигналами (радиозвуком), резко отличным от такового абиогенных препаратов. Характерным, и полностью совпадающим с данными [25], было наличие чередования четких одиночных радио звуковых периодических (или почти периодических) сигналов, чередующихся со стохастическими, аналогично наблюдению в [25] относительно характера воздействия инфракрасного лазера
на ДНК. Представляется, что это еще одна демонстрация высокой самоорганизации (солитонообразования) ДНК в рамках явления возврата Ферми-Пасты-Улама, самоорганизации, свойственной генетическим структурам как одно из фундаментальных проявлений памяти наследственности. Иными словами, в настоящем исследовании мы в какой-то степени подтвердили обнаруженную в [25] “солитонную память” ДНК на определенные моды возбуждения препарата, например, на механические вибрации. Характерно, что специфические модуляции радио звука при этом полностью соответствовали изменению во времени двумерных спекл-картин рассеянного препаратами ДНК света. Этот эффект полностью прекращался, если на препараты воздействовали ультразвуком (25 кГц, мощность 6,6 ) в течение 10-15 секунд на расстоянии 1-2 сантиметра. После этого радиозвук становился монотонным и практически не отличался от фонового.Можно высказать рабочую гипотезу о том, какие события происходят при взаимодействии ультразвука и генетических структур:
а) происходят разрывы молекул ДНК;
б) некоторые моды (или обертона) “записываются” на уровне акустики ДНК в рамках солитонного явления возврата Ферми-Паста-Улама и периодически возвращаются, “проигрываются” геноструктурами, подавляя (зашумляя) генознаковую ( в том числе и онко-генознаковую) акустику ДНК;
в) происходят оба перечисленных процесса.
В живом организме при хирургических операциях на раковых опухолях ультразвуковыми скальпелями, разработанных В.И.Лощиловым, это приводит к “стиранию” извращенной генетической информации, даваемой онкогенами, и тем самым к прерыванию метастазов.