Смекни!
smekni.com

Волновой генетический код (стр. 13 из 23)

(3)

где W и

- энергия и длительность лазерного импульса,
- эффективный объем среды, в котором реализуется двухфотонное поглощение (S - площадь поперечного сечения сфокусированного светового пучка, падающего на исследуемый образец,
- эффективная длина проникновения излучения в образец),
- плотность биомакромолекул (ДНК или нуклеогистона).

С учетом соотношений (1) - (3) условие для cоздания инверсной заселённости суперфлуоресценции записывается в виде

.

Используя характерные данные

(для
нм) =
Дж,

t @ 10нс,

,
,

получаем оценку

,

что близко к использованным значениям интенсивности в наших экспериментах.

Проведенные экспериментальные исследования и их теоретические оценки дают основание достаточно уверенно предполагать, что при используемых режимах двухфотонного возбуждения с использованием активатора-димедрола в геноструктурах in vitro реализуется усиление люминесценции, т.е. излучение ДНК и нуклеогистона носит характер суперфлуоресценции.

Не исключено, что в биосистеме роль димедролоподобных веществ в качестве активаторов могут выполнять эндогенные соединения, прямо или косвенно взаимодействующие с ДНК и хромосомами (стероидные гормоны, углеводы, нуклеозид -моно, -ди и -трифосфаты, некоторые витамины (например, рибофлавин), ароматические и гетероциклические аминокислоты, катехол- и индолалкиламины, некоторые антибиотики, наркотические вещества (например, эндогенные морфины - метаболиты этанола и пептиды-эндорфины), алкалоиды, токсины, ко-факторы ферментов, гем-содержащие белки и другие многочисленные органические соединения, содержащие бензольные и гетероциклические компоненты.

Неясны условия реализации инверсной электронной заселенности геноструктур in vivo, близкие тем, которые использовались нами в режимах ДВЛ. Такие условия могут создаваться в биосистемах, например, за счет фотон-фононных взаимодействий в ДНК в рамках теории Дике.

Однако, это относится к чисто физическим механизмам. Что касается физико-биохимических процессов, приводящих к лазерной накачке ДНК и хромосом in vivo, то в качестве таковых можно предсказать наличие в биосистемах мощных АТФ-азных систем, поставляющих энергию для перевода генетических структур в биокогерентные состояния (аналогичные тем, что как частный случай изложены в настоящей главе).

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ СОЗДАНИЯ БИОЛАЗЕРА НА ФРЕЛИХОВКИХ МОДАХ [3]

В данной главе обсуждается и аналитически рассматривается возможность создания перевозбужденного состояния основной (выделен-ной) коллективной Фрелиховской моды за счет когерентного резо-нансного взаимодействия электромагнитного (амплитудно-модулиро-ванного) излучения с Фрелиховским осциллятором. В рамках по-нятий лазерной физики речь идет о создании инверсной заселенности между квантовыми уровнями выделенной колебательной моды и, в итоге, о реализации “in vitro-in vivo” суперфлуоресценции и лазерной генерации с использованием в качестве рабочих тел молекул ДНК, РНК, белков, а также таких надмолекулярных структур, как рибосомы, полирибосомы и хромосомы.

Подчеркнем, что в отличие от Фрелиховского подхода, в котором подразумевается квазинеравновесное состояние (колебательная температура выделенной моды превосходит таковую “тепловой бани” Tvib>Teq>0, т.е. колебания квазиравновесны), в данной работе оценены условия, при которых система рассматриваемых биосубстратов инвертирована (Tvib<0), что прямо связано с созданием инверсной населенности.

Итак, Фрелиховская мода моделируется двухуровневой квантовой системой (уровень 1 - основное состояние, 2 - верхнее), возбуждаемой резонансным амплитудно-модулированным электрическим полем

E ( t) =E og(t)сosw t , (1)

где E o - амплитуда напряженности поля, g(t) - модуляционный фактор, w =w 21 (w 21 - частота перехода 2® 1).

Процесс возбуждения колебаний моды описывается уравнением Больцмана для матрицы плотности:

, (2)

где оператор гамильтона в дипольном приближении имеет вид:

где Ho=

w 21
- гамильтониан изолированной двухуровневой системы, оператору
соответствует матрица с элементами
11=
12=
21=0,
22=1,
- оператор прекции индуцированного дипольного момента осциллятора на направление поля,
- равновесная матрица плотности,
- феноменологически введенное время релаксации (для диагональных элементов
=T1, для недиагональных - T2).

Уравнению Больцмана (2) эквивалентна следующая система уравнений для элементов матрицы плотности (

ik; i,k=1,2):

i

(
11+(
11-1)/T1)= E(t)(
21
12 -
12
21),

i

(
12+
12/T2)= -
21
12- E(t)
12(
22 -
11) , (3)

i

(
21+
21/T2)= +
21
21+E(t)
21(
22 -
11)

с учетом уровня нормировки

22+
11=1 (4)

Нетрудно показать, что система (3) может сводиться к уравнению (при выкладках вторыми гармониками ~ exp(2i

21t) пренебрегалось):
22+
22+