Смекни!
smekni.com

Объекты нечисловой природы (стр. 4 из 5)

"Другими известными примерами порядковых шкал являются: в медицине - шкала стадий гипертонической болезни по Мясникову, шкала степеней сердечной недостаточности по Стражеско-Василенко-Лангу, шкала степени выраженности коронарной недостаточности по Фогельсону; в минералогии - шкала Мооса (тальк - 1, гипс - 2, кальций - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10), по которому минералы классифицируются согласно критерию твердости; в географии - бофортова шкала ветров ("штиль", "слабый ветер", "умеренный ветер" и т.д.) [91, с. 329].

По шкале интервалов измеряют величину потенциальной энергии или координату точки на прямой, на которой не отмечены ни начало, ни единица измерения; по шкале отношений - большинство физических единиц: массу тела, длину, заряд, а также цены в экономике. Время измеряется по шкале разностей, если год принимаем естественной единицей измерения, и по шкале интервалов в общем случае. В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой шкале (холоднее - теплее), затем - по интервальной (шкалы Цельсия, Фаренгейта, Реомюра) и, наконец, после открытия абсолютного нуля температур - по шкале отношений (шкала Кельвина) [89]. Следует отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины [37, 39, 40, 63, 89]. Термин "репрезентативная" разъяснен в работах [37, 39, 40]. Он использовался, чтобы отличить рассматриваемый подход к измерениям от классической метрологии [88], от работ А.Н.Колмогорова и А.Лебега, связанных с измерением геометрических величин (например, [92])., от "алгоритмической теории измерения" [93] и др.

Необходимость использования в математических моделях реальных явлений таких объектов нечисловой природы, как бинарные отношения, множества, нечеткие множества, кратко была показана выше. Здесь же обратим внимание, что используемые в классической статистике результаты наблюдений также "не совсем числа". Именно любая величина измеряется всегда с некоторой погрешностью

и результатом наблюдения является

Погрешностями измерений занимается метрология [88].Отметим справедливость следующих фактов:

а) для большинства реальных измерений невозможно полностью исключить систематическую ошибку:

;

б) распределение

не всегда является нормальным [94];

в)

и
обычно нельзя считать независимыми случайными величинами;

г) распределение погрешностей оценивается по результатам случайных наблюдений, следовательно, полностью известным считать его нельзя; зачастую исследователь располагает лишь границами для систематической погрешности и оценками таких характеристик для случайной погрешности, как дисперсия или размах.

Приведенные факты показывают ограниченность области применимости модели погрешностей, в которой

и
рассматриваются как независимые случайные величины, причем
имеет нормальное распределение с нулевым математическим ожиданием.

Строго говоря, результаты наблюдения всегда имеют дискретное распределение, поскольку описываются числами с небольшими (1 - 5) числом значащих цифр. Возникает дилемма: либо признать, что непрерывные распределения - фикция, и прекратить ими пользоваться, либо считать, что непрерывные распределения имеют "реальные" величины

, которые мы наблюдаем с принципиально неустранимой погрешностью
. Первый выход в настоящее время нецелесообразен, так как потребует отказаться от большей части разработанного математического аппарата. Из второго следует необходимость изучения влияния неустранимых погрешностей на статистические выводы.

Погрешности

можно учитывать либо с помощью вероятностной модели (
- случайная величина, имеющая функцию распределения, вообще говоря, зависящую от
), либо с помощью нечетких множеств. Во втором случае приходим к теории нечетких чисел, развитой П.Б.Шошиным [95] с целью описания поведения человека, и к интервальной статистике [9, 13, 19 - 25, 96 - 101].

Другой источник появления

связан с принятой в конструкторской и технологической документации системой допусков на контролируемые параметры изделий и деталей, с использованием шаблонов при проверке контроля качества продукции. В этих случаях характеристики
определяются не свойствами средств измерения, а применяемой технологией проектирования и производства. В терминах математической статистики сказанному соответствует группировка данных, при которой мы знаем, какому из заданных интервалов принадлежит наблюдение, но не знаем точного значения результата наблюдения. Применение группировки может дать экономический эффект, поскольку зачастую легче (в среднем) установить, к какому интервалу относится результат наблюдения, чем точно измерить его.

Объекты нечисловой природы как результат статистической обработки данных.

Объекты нечисловой природы появляются не только на "входе" статистической процедуры, но и в процессе обработки данных, и на "выходе" в качестве итога статистического анализа.

Рассмотрим простейшую прикладную постановку задачи регрессии. Данные имеют вид

. Цель состоит в том, чтобы с достаточной точностью описать
как полином от
, т.е. модель имеет вид

, (5)

где

- неизвестная степень полинома;
- неизвестные коэффициенты многочлена;
,
- погрешности, которые для простоты примем независимыми и имеющими одно и то же нормальное распределение. Распространенная процедура такова [102]: сначала пытаются применить модель (5) для линейной функции (
= 1), при неудаче переходят к многочлену второго порядка (
= 2), если снова неудача, то берут модель (5) с
= 3 и т.д. (адекватность модели проверяют по F-критерию Фишера).

Обсудим свойства этой процедуры в терминах математической статистики. Если степень полинома задана (

=
), то его коэффициенты оценивают методом наименьших квадратов, свойства этих оценок хорошо известны (см., например, [62, гл.26}). Однако в описанной выше реальной постановке
тоже является неизвестным параметром и подлежит оценке. Таким образом, требуется оценить объект
,
., множество значений которого можно обозначить
Это - объект нечисловой природы, обычные методы оценивания его неприменимы, так как
- дискретный параметр. В рассматриваемой постановке методы оценивания носят в основном эвристический характер {103, гл.12}. Свойства описанной выше распространенной процедуры рассмотрены в работе {104}; в которой показано, что m при этом оценивается несостоятельно (см. также .{14,18}).