"Другими известными примерами порядковых шкал являются: в медицине - шкала стадий гипертонической болезни по Мясникову, шкала степеней сердечной недостаточности по Стражеско-Василенко-Лангу, шкала степени выраженности коронарной недостаточности по Фогельсону; в минералогии - шкала Мооса (тальк - 1, гипс - 2, кальций - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10), по которому минералы классифицируются согласно критерию твердости; в географии - бофортова шкала ветров ("штиль", "слабый ветер", "умеренный ветер" и т.д.) [91, с. 329].
По шкале интервалов измеряют величину потенциальной энергии или координату точки на прямой, на которой не отмечены ни начало, ни единица измерения; по шкале отношений - большинство физических единиц: массу тела, длину, заряд, а также цены в экономике. Время измеряется по шкале разностей, если год принимаем естественной единицей измерения, и по шкале интервалов в общем случае. В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой шкале (холоднее - теплее), затем - по интервальной (шкалы Цельсия, Фаренгейта, Реомюра) и, наконец, после открытия абсолютного нуля температур - по шкале отношений (шкала Кельвина) [89]. Следует отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины [37, 39, 40, 63, 89]. Термин "репрезентативная" разъяснен в работах [37, 39, 40]. Он использовался, чтобы отличить рассматриваемый подход к измерениям от классической метрологии [88], от работ А.Н.Колмогорова и А.Лебега, связанных с измерением геометрических величин (например, [92])., от "алгоритмической теории измерения" [93] и др.
Необходимость использования в математических моделях реальных явлений таких объектов нечисловой природы, как бинарные отношения, множества, нечеткие множества, кратко была показана выше. Здесь же обратим внимание, что используемые в классической статистике результаты наблюдений также "не совсем числа". Именно любая величина измеряется всегда с некоторой погрешностью
Погрешностями измерений занимается метрология [88].Отметим справедливость следующих фактов:
а) для большинства реальных измерений невозможно полностью исключить систематическую ошибку:
б) распределение
в)
г) распределение погрешностей оценивается по результатам случайных наблюдений, следовательно, полностью известным считать его нельзя; зачастую исследователь располагает лишь границами для систематической погрешности и оценками таких характеристик для случайной погрешности, как дисперсия или размах.
Приведенные факты показывают ограниченность области применимости модели погрешностей, в которой
Строго говоря, результаты наблюдения всегда имеют дискретное распределение, поскольку описываются числами с небольшими (1 - 5) числом значащих цифр. Возникает дилемма: либо признать, что непрерывные распределения - фикция, и прекратить ими пользоваться, либо считать, что непрерывные распределения имеют "реальные" величины
Погрешности
Другой источник появления
Объекты нечисловой природы как результат статистической обработки данных.
Объекты нечисловой природы появляются не только на "входе" статистической процедуры, но и в процессе обработки данных, и на "выходе" в качестве итога статистического анализа.
Рассмотрим простейшую прикладную постановку задачи регрессии. Данные имеют вид
где
Обсудим свойства этой процедуры в терминах математической статистики. Если степень полинома задана (