.
Из пункта 2 аксиомы, по которой вводилось определение вероятности события, следует, что если A1 и A2 несовместные события, то
P(
) = P(A1) + P(A2)Если A1 и A2 — совместные события, то
=(A1\A2) , причем очевидно, что A1\A2 и A2 — несовместные события. Отсюда следует:P(
) = P(A1\A2) + P(A2) (*)Далее очевидно: A1=(A1\A2)
, причем A1\A2 и – несовместные события, откуда следует: P(A1) = P(A1\A2) + P( ) Найдем из этой формулы выражение для P(A1\ A2) и подставим его в правую часть формулы (*). В результате получим формулу сложения вероятностей:P(
)= P(A1) + P(A2) – P( )Из последней формулы легко получить формулу сложения вероятностей для несовместных событий, положив
= Æ.Пример 1. Найти вероятность вытащить туза или червовую масть при случайном отборе одной карты из колоды в 32 листа.
Р( ТУЗ ) = 4/32 = 1/8; Р( ЧЕРВОВАЯ МАСТЬ ) = 8/32 = 1/4;
Р(ТУЗЧЕРВЕЙ )=1/32;
Р(( ТУЗ )
(ЧЕРВОВАЯ МАСТЬ )) = 1/8 + 1/4 – 1/32 =11/32Того же результата можно было достичь с помощью классического определения вероятности, пересчитав число благоприятных исходов.
Условные вероятности.
Рассмотрим задачу. Студент перед экзаменом выучил из 30 билетов билеты с номерами с 1 по 5 и с 26 по 30. Известно, что студент на экзамене вытащил билет с номером, не превышающим 20. Какова вероятность, что студент вытащил выученный билет?
Определим пространство элементарных исходов: W=(1,2,3,...,28,29,30). Пусть событие А заключается в том, что студент вытащил выученный билет: А=(1,...,5,25,...,30,), а событие В — в том, что студент вытащил билет из первых двадцати: В=(1,2,3,...,20)
Событие
состоит из пяти исходов: (1,2,3,4,5), и его вероятность равна 5/30. Это число можно представить как произведение дробей 5/20 и 20/30. Число 20/30 – это вероятность события B. Число 5/20 можно рассматривать как вероятность события А при условии, что событие В произошло (обозначим её Р(А/В)). Таким образом, решение задачи определяется формулойР(А/В) = P(АÇВ) /Р(B) (1)
Р(А/В) называется условной вероятностью события A при условии, что событие В произошло. Формулу (1) можно рассматривать, как определение условной вероятности. Эту же формулу можно переписать в виде
P(АÇВ)=Р(А/В)Р(B) (2)
Формула (2) называется формулой умножения вероятностей (теоремой умножения вероятностей), а условная вероятность Р(А/В) здесь должна восприниматься просто по смыслу.
Пример 2. Из урны, содержащей 7 белых и 3 черных шаров, наудачу один за другим извлекают (без возвращения) два шара. Какова вероятность того, что первый шар будет белым, а второй черным?
Пусть X – событие, состоящее в извлечении первым белого шара, а Y — событие, состоящее в извлечении вторым черного шара. Тогда
– событие, заключающееся в том, что первый шар будет белым, а второй — черным. P(Y/X) =3/9 =1/3 — условная вероятность извлечения вторым черного шара, если первым был извлечен белый. Учитывая, что P(X) = 7/10, по формуле умножения вероятностей получаем: P( ) = 7/30Событие А называется независимым от события В (иначе: события А и В называются независимыми), если Р(А/В)=Р(А). За определение независимых событий можно принять следствие последней формулы и формулы умножения
P(АÇВ)= Р(А) Р(B)
Докажите самостоятельно, что если А и В — независимые события, то
и тоже являются независимыми событиями.Пример 3. Найти вероятность того, что при трёх бросках игральной кости три раза выпадет шестёрка. Очевидно, что при каждом броске результат не зависит от результатов предыдущих бросков, и искомая вероятность равна (1/6)3=1/216.
Определим в условиях этой задачи вероятность того, что при трёх бросках в сумме выпало 4 очка. Выпишем благоприятные исходы: “1,1,2”, “1,2,1”, “2,1,1”. Вероятность каждого из этих исходов равна 1/216. Так как все эти исходы несовместимы, интересующая нас вероятность будет равна 3/216=1/72.
Пример 4. Из колоды карт в 32 листа извлекается одна карта. Пусть А – событие, состоящее в том, что извлечённая карта – дама. Событие В состоит в том, что извлечённая карта пиковой масти. Очевидно, что Р(А)=4/32=1/8. Вычислим величину вероятность того, что извлечённая карта –дама при условии, что эта карта пиковой масти, то есть Р(А/В). Очевидно, что Р(АÇВ)=1/32, и Р(В)=8/32. Тогда Р(А/В)=Р(АÇВ)/ Р(В)=1/8, то есть Р(А)=Р(А/В). Отсюда следует, что события А и В независимы.
Пусть событие С заключается в том, что извлечённая карта не туз. Покажем, что события А и С зависимы. Очевидно, что Р(АÇС)=Р(А)=1/8. Р(С)=28/32=7/8. Отсюда получаем Р(А/С)=1/7, и это не равно величине Р(А), следовательно, события А и С зависимы.
Пример 5. Рассмотрим задачу, аналогичную задаче из примера 2, но с одним дополнительным условием: вытащив первый шар, запоминаем его цвет и возвращаем шар в урну, после чего все шары перемешиваем. В данном случае результат второго извлечения никак не зависит от того, какой шар – черный или белый появился при первом извлечении. Вероятность появления первым белого шара (событие А) равна 7/10. Вероятность события В – появления вторым черного шара – равна 3/10. Теперь формула умножения вероятностей дает: P(АÇВ)=21/100.
Извлечение шаров способом, описанным в этом примере, называется выборкой с возвращением или возвратной выборкой.
Следует отметить, что если в двух последних примерах положить изначальные количества белых и черных шаров равными соответственно 7000 и 3000, то результаты расчетов тех же вероятностей будут отличаться пренебрежимо мало для возвратной и безвозвратной выборок.
Рассмотрим некоторые задачи на применение теорем сложения и умножения вероятностей.
1. Три стрелка стреляют в мишень. Каждый попадает в мишень или не попадает в мишень независимо от результатов выстрелов остальных стрелков. Первый стрелок попадает в мишень с вероятностью 0,9, второй – с вероятностью 0,8, а третий – с вероятностью 0,7. Найти вероятность того, что мишень будет поражена?
Вопрос можно поставить иначе: какова вероятность того, что хотя бы один стрелок попадёт в мишень? Очевидно, что мишень будет поражена, если все трое попадут в мишень, если в мишень попадут любые двое стрелков, а третий не попадёт и т. д. Пусть событие А состоит в том, что хотя бы один из стрелков попал в мишень. Тогда противоположное событие
заключается в том, что все трое не попали в мишень. Если первый не попадает в мишень с вероятностью 0,1, второй – с вероятностью 0,2, а третий – с вероятностью 0,3, то по теореме умножения вероятностей Р( )=0,1×0,2×0,3=0,006. Тогда Р(А)=1–Р( )=0,994.2. При включении двигатель начинает работать с вероятностью р. а) Найти вероятность того, что двигатель начнёт работать с второго включения. б) Найти вероятность того, что для запуска двигателя потребуется не более двух включений.
а) Для того, чтобы двигатель начал работать со второго включения, нужно, во-первых, чтобы он не запустился при первом включении (событие А). Это происходит с вероятностью 1–р. При втором включении двигатель запустится (событие В) с вероятностью р. Нас интересует вероятность события АÇВ. Из условия задачи можно понять, что события А и В независимы. Отсюда P(АÇВ)=р(1–р).
б) Нас интересует вероятность события, состоящего в том, что двигатель запустится при первом включении или при втором включении. Противоположное событие заключается в том, что двигатель не запустится ни при первом, н при втором включении. Вероятность этого противоположного события равна (1–р)2. Отсюда вероятность интересующего нас события равна 1–(1–р)2.
3. В семье Ивановых 4 ребёнка. Известно, что один из детей – мальчик. Найти вероятность того, что все дети –мальчики. Принять вероятность рождения мальчика и вероятность рождения девочки равными 1/2 и не зависящими от того, какого пола дети уже имеются в семье.
Пусть событие В состоит в том, что все дети в семье – мальчики, событие А состоит в том, что в семье есть хотя бы один мальчик (именно так мы должны понимать условие задачи). Нас интересует величина Р(В/А). Для того, чтобы воспользоваться формулой условной вероятности, надо, во-первых, вычислить P(АÇВ). В нашем случае событие А является следствием события В, поэтому P(АÇВ)=Р(В) (смотри объяснение к теме 2). По условию задачи Р(В)=(1/2)4=1/16. Чтобы вычислить Р(А), заметим, что событие
состоит в том, что все дети в семье –девочки. Очевидно, что Р( )=(1/2)4=1/16. Тогда Р(А)=1–Р( )=15/16. Теперь можно воспользоваться формулой для определения условной вероятности Р(В/А) = P(АÇВ)/Р(А). В результате получается Р(В/А)=(1/16)/( 15/16)=1/15.