Смекни!
smekni.com

Формулы сложения вероятностей (стр. 2 из 2)

Если бы в условии этой задачи был поставлен вопрос “чему равна вероятность того, что все дети мальчики, при условии, что второй ребёнок – мальчик?”, то ответ был бы 1/8.

4. В урне 7 белых и три чёрных шара. Без возвращения извлекаются 3 шара. Известно, что среди них есть чёрный шар. Найти вероятность того, что другие два шара белые.

Пусть событие А состоит в том, что в выборке есть два белых шара, событие В – в том, что в выборке есть чёрный шар. Всего в условии задачи существует

возможных исходов. Отсюда Р(АÇВ)=
. Чтобы вычислить вероятность Р(В), заметим, что
состоит в том, что все извлечённые шары белые, и Р(
)=
. Искомая вероятность равна (
)/(1–
)=63/85.

5. Найти вероятность того, что при бросании трёх игральных костей хотя бы на одной выпадет 6 очков при условии, что на всех костях выпали грани с чётным числом очков.

Пусть событие А состоит в том, что хотя бы на одной кости выпало 6 очков, а событие В–в том, что на всех костях выпало чётное число очков. Вычислим вероятность события АÇВ. Общее число исходов, очевидно равно 63=216. Одним из благоприятных исходов является выпадение 6-ти очков на всех трёх костях. Имеется 6 исходов, состоящих в выпадении шестёрок на двух костях и выпадении чётного числа очков, но не шестёрки на третьей кости. Можно насчитать 12 исходов, когда на одной кости выпадает шестёрка, а на двух других–чётные числа очков, но не шестёрки. Таким образом, событию АÇВ благоприятствуют 19 исходов, откуда Р(АÇВ)=19/216. Очевидно, что Р(В)=(1/2)3=1/8. Искомая вероятность равна (19/216)/(1/8)=19/27.

6. Студент знает 20 из 25 вопросов программы. Зачёт сдан, если студент ответит не менее чем на 3 из 4-х вопросов в билете. Взглянув на первый вопрос, студент обнаружил, что знает его. Какова вероятность, что студент сдаст зачёт?

Пусть А – событие, заключающееся в том, что студент сдал экзамен;

В – событие, заключающееся в том, что студент знает первый вопрос в билете.

Очевидно, что Р(В) =20/25=4/5. Теперь необходимо определить вероятность Р(АÇВ). Из 25-ти вопросов всего можно составить

различных билетов, содержащих 4 вопроса. Все билеты, выбор которых удовлетворял бы и событию А и событию В, должны быть составлены следующим образом: либо студент знает все вопросы билета (можно составить всего
таких билетов), либо студент знает первый, второй и третий вопросы, но не знает четвёртого (можно составить всего 5
таких билетов), либо студент знает первый, второй и четвёртый вопросы, но не знает третьего (тоже 5
билетов), либо студент знает первый, третий и четвёртый вопросы, но не знает второго (тоже 5
билетов). Отсюда получаем, что

Р(АÇВ) =

Осталось только найти искомую вероятность р(А/В):

Р(А/В) =

Задачи для самостоятельного решения.

1) Доказать формулу

Р(АÈВÈС)=Р(А)+ Р(В)+Р(С)–Р(АÇВ)–Р(АÇС)–Р(ВÇС)+Р(АÇВÇС)

2) Вероятность попасть в самолёт равна 0,4, вероятность его сбить равна 0,1. Найти вероятность того, что при попадании в самолёт он будет сбит.

3) Из урны, содержащей 6 белых и 4 чёрных шара, наудачу извлекают по одному шару до появления чёрного шара. Найти вероятность того, что придётся производить четвёртое извлечение, если выборка производится а)с возвращением; б) без возвращения.

4) а) В условиях задачи 1 найти вероятность того, что в мишень попали двое стрелков. б) В условиях задачи 1 найти вероятность того, что в мишень попали не менее двух стрелков.

5) По самолёту производится три выстрела. Вероятность попадания при первом выстреле равна 0,5, при втором – 0,6, при третьем–0,8. При одном попадании самолёт будет сбит с вероятностью 0,3, при двух–с вероятностью 0,6, при трёх самолёт будет сбит наверняка. Какова вероятность того, что самолёт будет сбит?

6) В условиях задачи 4 найти вероятность того, что на всех костях выпала шестёрка, если известно, что а) по крайней мере, на двух костях выпало одинаковое число очков; б) на всех костях выпало одинаковое число очков.

7) Бросаются три игральных кости. Какова вероятность того, что на одной из них выпадет единица, если на всех трёх костях выпали разные грани?

8) Вероятность того, что случайным образом выбранный из студенческой группы студент знает английский язык, равна 5/6. Вероятность того, что студент знает французский язык, равна 7/12. Вероятность того, что студент знает и английский и французский языки, равна 1/2. а) Найти вероятность того, что студент не знает французского языка при условии, что он не знает английского. б) Найти вероятность того, что студент знает французский язык при условии, что он знает английский.

9) Известно, что при бросании десяти игральных костей выпала хотя бы одна единица. Какова вероятность того, что выпало две или более единиц?

10) Цех изготовляет кинескопы для телевизоров, причем 70% всех кинескопов предназначены для цветных телевизоров и 30% – для мониторов. Известно, что 50% всей продукции отправляется на экспорт, причем из общего числа кинескопов, предназначенных для цветных телевизоров, 40% отправляется на экспорт. Найти вероятность того, что наудачу взятый для контроля кинескоп предназначен для монитора, если известно, что он будет отправлен на экспорт.

11) В ящике лежат 12 красных, 8 зелёных и 10 синих шаров. Наудачу вынимают два шара. Найти вероятность того, что будут вынуты шары разного цвета при условии, что не вынут синий шар.

Ответы. 2)1/4; 3) а) 0,216; б) 1/6; 4) а) 0,398; б) 0,902; 5) 0,594; 6) а) 1/96; б) 1/6; 7) 0,5; 8) а) 0,5; б) 0,3; 9)1-10×59/(610–510); 10) 0,44; 11) 48/95.